Verification Study of the Preliminary Remediation Goals for Radionuclides (PRG) Electronic Calculator
 Verifcation Study Record
 April 24, 2015 -September 30, 2015

CONTENTS:

Verification Study Charge
G. Timothy Jannik (Savannah River National Laboratory)

Review
Curriculum Vitae
Conflict of Interest Certification

Wm. Thomas Pentecost (Colorado Department of Public Health and Environment (Retired)

Review
Curriculum Vitae
Conflict of Interest Certification

Verification Study Charge for:

U.S. Environmental Protection Agency (EPA), "Preliminary Remediation Goals for Radionuclides" (PRG) electronic calculator

Background:

EMS, under contract EP-W-13-016 with EPA's Office of Solid Waste and Emergency Response, has been requested to obtain an external, independent verification study of the "Preliminary Remediation Goals for Radionuclides" (PRG) electronic calculator.

This calculator provides information on establishing PRGs for radionuclides at CERCLA sites with radioactive contamination. The PRG electronic calculator presents standardized exposure parameters and equations that should generally be used for calculating radionuclide PRGs for residential, commercial/industrial, and agricultural land use exposures, tap water and fish ingestion exposures, and migration of radionuclides through the unsaturated zone.

Charge:

According to EPA's Guidance on the Development, Evaluation, and Application of Environmental Models (2009), verification refers to activities designed to confirm that the mathematical framework embodied in the module is correct and that the computer code for a module is operating according to its intended design so that the results obtained compare favorably with those obtained using known analytical solutions or numerical solutions from simulators based on similar or identical mathematical frameworks.

The purpose of this verification study is to ascertain that the computer code has no inherent numerical problems with obtaining a solution and that the code performs according to design specifications. In addition, the study will ensure that the equations are programmed correctly and that sources of error, such as rounding, are minimal. We are enlisting two subject matter experts for this verification study. Your comments and recommendations will be used to revise the calculator so that the final version will reflect sound technical information and guidance.

As an independent tester of the PRG electronic calculator, we ask you to examine the numerical technique in the computer code for consistency with the conceptual model and governing equations.

When your verification study is complete, e-mail your comments to EMS's Project Manager (Jennifer Rando, jennifer.rando@emsus.com) on or before September 30, 2015. Please submit your comments in Microsoft Word and reference each comment to a specific step in the calculator and equation (http://epa-prgs.ornl.gov/radionuclides/equations.html). For specific comments or text edits on the user's guide, you may copy and paste text into Microsoft Word and indicate edits or comments using track changes or the comments feature. Please do not hand write your comments.

How to Use the Calculator:

The PRG calculator is available at http://epa-prgs.ornl.gov/radionuclides/, and the User's Guide is available at http://epa-prgs.ornl.gov/radionuclides/prg_guide.html. To summarize,

Step 1 Select an exposure scenario. The PRG calculator has nine exposure scenarios:

1. Resident
2. Composite Worker
3. Outdoor Worker
4. Indoor Worker
5. Construction Worker - Standard Unpaved Road Vehicle Traffic (Site-specific only)Farmer
6. Construction Worker - Wind Erosion and Other Construction Activities (Site-specific only)
7. Recreator
8. Farmer
9. Soil to Groundwater

Some of these exposure scenarios have multiple media choices; other scenarios will only involve one media so a choice will not appear.

Step 2 Select either "Generic" (in which case the runs use a pre-determined set of default input parameters) or "Site-Specific" (in which case the user can change some of the input parameters).

Step 3 Select if you want to get estimates of the cancer risk posed by radionuclides at your site, in addition to the target risk-based concentrations that will be provided as PRGs.

Step 4 Choose to have your results in either picocuries per gram, which are the units usually used in the United States, or in bequerels per gram which most of the rest of the world uses.

Step 5 Select one or more radionuclides for which you want to develop PRGs. Some of the radionuclides and radioactive decay chain products are designated with the suffix " +D " to indicate that cancer risk estimates for these radionuclides include the contributions from their short-lived decay products, assuming secular equilibrium.

The decay chain for +D radionuclide ends in 100 years.
The equations used in the calculator are listed at http://epa-
prgs.ornl.gov/radionuclides/equations.html. There are approximately 167 equations used in the calculator.

G. Timothy Jannik Savannah River National Laboratory

SAVANNAH RIVER NATIONAL LABORATORY

SRNL-STI-2015-00443
August 28, 2015
To: Jennifer Rando, Environmental Management Support, Inc.
From: Tim Jannik, SRNL
Brooke Stagich, SRNL

Verification of EPA's "Preliminary Remediation Goals for Radionuclides" (PRG) electronic Calculator

Introduction

The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated "Preliminary Remediation Goals for Radionuclides" (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used in the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.

Results

1) The only problem found in the equations was in the Farmer direct consumption of agricultural products back calculated to soil and water - combined calculation. There is a decay factor that is included in each of the intercept equations (Equation 1); however, it is not included in the results calculated by the PRG calculator. The results from calculations performed by hand were approximately 110% different from the PRG results when the decay factor was included (Table 1). Since the slope results were almost exact to the PRG results; this left only the PRG factor and decay

We put science to work. ${ }^{\text {™ }}$

factor as the possible problems. These were the only factors that were not included in the slope calculations as well as not being specific value parameters. After checking the PRG factor, these values were correct as shown by the results from the Farmer direct consumption of agricultural products (Table 2). Therefore, the factor that was causing the problem in the calculation was the decay factor. When the decay factor was removed from the hand calculations, the recalculated results showed a difference of $\leq 1 \%$ when compared to the current PRG results (Table 3).
2) For the air pathway, the hierarchal default slope factor for $\mathrm{H}-3$ is the particle form with an "S" absorption type. It is cumbersome to change this to the much more common vapor form (tritum oxide). To make the PRG Calculator more user friendly, it is suggested that the isotope list include the more common forms of radionuclides instead of defaulting to highest slope factor form.

Conclusions

After performing all the calculations for Am-241, Co-60, H-3, and Pu-238, EPA's PRG electronic calculator appears to be mathematically correct in all scenarios and pathways, except for the Farmer direct consumption - combined calculation.

We put science to work. ${ }^{\text {™ }}$

Equation 1: The intercept equation for consumption of fruits and vegetables with a decay factor included.

$$
\text { INTERCEPT }=\frac{\text { PRG }_{\mathrm{f} \text {-prod-rad-ing }}(\mathrm{pCi} / \mathrm{g})}{\left(\mathrm{R}_{\mathrm{upv}}+\mathrm{R}_{\mathrm{es}}\right)} \times\left(\frac{\mathrm{t}_{\mathrm{f}}(\mathrm{yr}) \times \lambda\left(\frac{1}{\mathrm{yr}}\right)}{\left(1-\mathrm{e}^{-\lambda \mathrm{\lambda}_{\mathrm{f}}}\right)}\right)
$$

Table 1: The results from hand calculations using Co-60 compared to the PRG results when the decay factor was included in the hand calculations.

Co-60				
		Calculated	PRG	\% Differ.
$\mathrm{F} \& \mathrm{~V}$	Slope	$-2.33 \mathrm{E}+01$	$-2.32 \mathrm{E}+01$	0.4%
	Intercept	$1.50 \mathrm{E}-01$	$4.35 \mathrm{E}-02$	110.1%
Fish	Slope	$-4.80 \mathrm{E}-01$	$-4.80 \mathrm{E}-01$	0.0%
	Intercept	$5.01 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	109.7%
Beef	Slope	$-1.54 \mathrm{E}+01$	$-1.54 \mathrm{E}+01$	0.0%
	Intercept	$4.67 \mathrm{E}+01$	$1.37 \mathrm{E}+01$	109.3%
Milk	Slope	$-1.93 \mathrm{E}+01$	$-1.93 \mathrm{E}+01$	0.0%
	Intercept	$4.97 \mathrm{E}+01$	$1.45 \mathrm{E}+01$	109.7%
Swine	Slope	$-7.19 \mathrm{E}+00$	$-7.19 \mathrm{E}+00$	0.0%
	Intercept	$4.02 \mathrm{E}+01$	$1.18 \mathrm{E}+01$	109.2%
Poultry	Slope	$-5.43 \mathrm{E}+00$	$-5.43 \mathrm{E}+00$	0.0%
	Intercept	$1.63 \mathrm{E}+00$	$4.76 \mathrm{E}-01$	109.6%
Egg	Slope	$-5.43 \mathrm{E}+00$	$-5.43 \mathrm{E}+00$	0.0%
	Intercept	$9.58 \mathrm{E}+01$	$2.80 \mathrm{E}+01$	109.5%

We put science to work. ${ }^{\text {m }}$

Table 2: The results from the hand calculations using Co-60 compared to the PRG results from the Farmer direct consumption calculations.

Co-60			
	Calculated	PRG	\% Differ.
F \& V	$1.18 \mathrm{E}-02$	$1.16 \mathrm{E}-02$	1.7%
Poultry	$3.41 \mathrm{E}-02$	$3.40 \mathrm{E}-02$	0.3%
Eggs	$6.82 \mathrm{E}-02$	$6.82 \mathrm{E}-02$	0.0%
Beef	$2.02 \mathrm{E}-02$	$2.02 \mathrm{E}-02$	0.0%
Milk	$7.43 \mathrm{E}-03$	$7.42 \mathrm{E}-03$	0.1%
Swine	$3.73 \mathrm{E}-02$	$3.73 \mathrm{E}-02$	0.0%
Fish	$2.32 \mathrm{E}-02$	$2.32 \mathrm{E}-02$	0.0%

Table 3: The results from hand calculations using Co-60 compared to the PRG results when the decay factor was not included in the hand calculations.

Co-60				
		Calculated	PRG	\% Differ.
$\mathrm{F} \& \mathrm{~V}$	Slope	$-2.33 \mathrm{E}+01$	$-2.32 \mathrm{E}+01$	0.4%
	Intercept	$4.40 \mathrm{E}-02$	$4.35 \mathrm{E}-02$	1.1%
Fish	Slope	$-4.80 \mathrm{E}-01$	$-4.80 \mathrm{E}-01$	0.0%
	Intercept	$1.47 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	0.7%
Beef	Slope	$-1.54 \mathrm{E}+01$	$-1.54 \mathrm{E}+01$	0.0%
	Intercept	$1.37 \mathrm{E}+01$	$1.37 \mathrm{E}+01$	0.0%
Milk	Slope	$-1.93 \mathrm{E}+01$	$-1.93 \mathrm{E}+01$	0.0%
	Intercept	$1.46 \mathrm{E}+01$	$1.45 \mathrm{E}+01$	0.7%
Swine	Slope	$-7.19 \mathrm{E}+00$	$-7.19 \mathrm{E}+00$	0.0%
	Intercept	$1.18 \mathrm{E}+01$	$1.18 \mathrm{E}+01$	0.0%
Poultry	Slope	$-5.43 \mathrm{E}+00$	$-5.43 \mathrm{E}+00$	0.0%
	Intercept	$4.76 \mathrm{E}-01$	$4.76 \mathrm{E}-01$	0.0%
Egg	Slope	$-5.43 \mathrm{E}+00$	$-5.43 \mathrm{E}+00$	0.0%
	Intercept	$2.81 \mathrm{E}+01$	$2.80 \mathrm{E}+01$	0.4%

We put science to work. ${ }^{\text {mw }}$

	External Exposure							
	Type	jround Plan	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)
Am-241	M	$1.87 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	$1.38 \mathrm{E}-08$	$2.58 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	$1.32 \mathrm{E}-13$	5.81E-11
Co-60	M	$2.19 \mathrm{E}-06$	$1.24 \mathrm{E}-05$	2.26E-06	6.49E-06	$1.04 \mathrm{E}-05$	$2.44 \mathrm{E}-11$	$1.13 \mathrm{E}-08$
H-3	V	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
H-3	M	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$
Pu-238	M	$3.68 \mathrm{E}-10$	$6.92 \mathrm{E}-11$	$4.81 \mathrm{E}-11$	6.30E-11	6.87E-11	5.96E-16	$2.56 \mathrm{E}-13$

Ingestion										
	Type						SF(w)	SF(f)	SF(s)	Soil Worker
Am-241	M	$1.04 \mathrm{E}-10$	$1.34 \mathrm{E}-10$	$1.84 \mathrm{E}-10$	$9.10 \mathrm{E}-11$					
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	$3.81 \mathrm{E}-11$	$7.33 \mathrm{E}-12$					
$\mathrm{H}-3$	V	$5.07 \mathrm{E}-14$	$6.51 \mathrm{E}-14$	$8.99 \mathrm{E}-14$	$4.51 \mathrm{E}-14$					
$\mathrm{H}-3$	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$					
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$					

Inhalation Form		
Am-241	F	$3.77 \mathrm{E}-08$
Am-241	M	$2.81 \mathrm{E}-08$
Am-241	S	$3.54 \mathrm{E}-08$
$\mathrm{Co}-60$	F	$1.71 \mathrm{E}-11$
$\mathrm{Co}-60$	M	$3.59 \mathrm{E}-11$
$\mathrm{Co}-60$	S	$1.01 \mathrm{E}-10$
$\mathrm{H}-3$	F	$1.95 \mathrm{E}-14$
$\mathrm{H}-3$	M	$1.99 \mathrm{E}-13$
$\mathrm{H}-3$	S	$8.47 \mathrm{E}-13$
$\mathrm{H}-3$	V	$5.62 \mathrm{E}-14$
$\mathrm{H}-3$	亏(elemental	$5.62 \mathrm{E}-18$
$\mathrm{H}-3$	G (organic)	$1.28 \mathrm{E}-13$
Pu-238	F	$5.22 \mathrm{E}-08$
$\mathrm{Pu}-238$	M	$3.36 \mathrm{E}-08$
Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m} \wedge 2$	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m} \wedge 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$00000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	8.40E-02	1.50E-01	2.70E-01	$3.90 \mathrm{E}-01$	5.10E-01	6.50E-01	$7.40 \mathrm{E}-01$	$8.10 \mathrm{E}-01$	$8.70 \mathrm{E}-01$	$9.10 \mathrm{E}-01$	$9.30 \mathrm{E}-01$	$9.50 \mathrm{E}-01$	9.80E-01	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	2.80E-02	5.20E-02	$9.80 \mathrm{E}-02$	$1.50 \mathrm{E}-01$	2.10E-01	2.90E-01	$3.70 \mathrm{E}-01$	$4.40 \mathrm{E}-01$	$5.40 \mathrm{E}-01$	5.90E-01	6.60E-01	7.40E-01	8.10E-01	8.70E-01	9.10E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.00 \mathrm{E}-01$	$1.80 \mathrm{E}-01$	$3.30 \mathrm{E}-01$	$4.70 \mathrm{E}-01$	6.10E-01	7.80E-01	$8.70 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$							

Soil Volume, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m} \wedge 2$	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m} \wedge 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	$1.90 \mathrm{E}-01$	$3.20 \mathrm{E}-01$	4.80E-01	$5.50 \mathrm{E}-01$	6.60E-01	6.90E-01	7.50E-01	$7.40 \mathrm{E}-01$	$8.20 \mathrm{E}-01$	$8.70 \mathrm{E}-01$	9.10E-01	$1.10 \mathrm{E}+00$	9.50E-01	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	$1.80 \mathrm{E}-01$	$3.30 \mathrm{E}-01$	4.90E-01	$5.90 \mathrm{E}-01$	7.00E-01	7.40E-01	7.60E-01	7.10E-01	$9.30 \mathrm{E}-01$	8.50E-01	8.80E-01	9.20E-01	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	9.50E-01	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	$5.90 \mathrm{E}-01$	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	$9.40 \mathrm{E}-01$	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

Exposure to Unpaved Roads					Exposure to Other than Unpaved Roads				
	gestion	Inhalation	External	Total			Inhalation		Total
Am－241	1．60E－09	1．60E－09	1．60E－09	$1.00 E+00$	Am－241	1．60E－09	$1.60 \mathrm{E}-09$	1．60E－09	$1.00 \mathrm{E}+00$
	1．20E－11	$1.49 \mathrm{E}-10$	1．09E－12	1．01E－01		1．20E－11	3．85E－11	1．09E－12	3．22E－02
	1．33E＋02	$1.08 \mathrm{E}+01$	$1.47 \mathrm{E}+03$	9．89E＋00		$1.33 \mathrm{E}+02$	4.16 E＋01	$1.47 \mathrm{E}+03$	$3.11 \mathrm{E}+01$
co－60	1．31E－07	1．311－07	1．312－07	$1.00 \mathrm{E}+00$	co－60	1．31E－07	1．31E－07	1．31E－07	$1.00 E+00$
	7．45E－11	3.078 －11	3．43E－08	2．62E－01		7．45E－11	7．93E－12	3．43E－08	2．61－01
	1．76E＋03	$4.28 \mathrm{EE}+03$	3．83E＋00	3．82E＋00		1．76E＋03	1．66E＋04	3．83E＋00	$3.83 E+00$
H－3		${ }^{5.63 E-08}$		$1.00 \mathrm{E}+00$	H－3		${ }^{5.63 \mathrm{E}-08}$		$\frac{1.002+00}{202}$
		1．36E－08		2．42E－01			1．36E－08		$2.42 \mathrm{E}-01$
		$4.13 \mathrm{E}+00$		$4.13 \mathrm{E}+00$			$4.13 \mathrm{E}+00$		$4.13 \mathrm{E}+00$
Pu－238	． 90	7．90E－09	7．90E－09	$1.00 \mathrm{E}+00$	Pu－238	7．90E－09	7．90E－09	7．90E－09	00
	7．60－－11	1．011－09	2．23E－14	1．38E－01		$7.60 \mathrm{E}-11$	2．62E－10	2．23E－14	4．28E－02
	1．04E＋02	$7.80 \mathrm{E}+00$	3．55E＋05	7．25E＋00		1．04E＋02	3．02E＋01	3．55k＋05	$2.345+01$
		Calculated	PRG	\％Differ．			Calculated	PRG	\％Differ．
尔	Ingestion	$1.33 E+02$	$1.33 E+02$	0．0\％		Ingestion	$1.33 \mathrm{E}+02$	1．33E＋02	0.0
	Inhalation	$1.08 \mathrm{E}+01$	$1.07 \mathrm{t}+01$	9\％		Inhalation	$4.16 \mathrm{E}+01$	$4.16 \mathrm{E}+01$	0.0
	External	$1.47 \mathrm{E}+03$	1．477 +03	0．0\％		Extern	1．47E＋+	1．47E +0	0．0\％
	tal	9．89E	9．88E＋00	0．1\％		Total	3．11E＋	3．10E＋0	0．3\％
$\begin{aligned} & \text { O} \\ & \hline \text { O } \end{aligned}$	Ingestion	$1.76 \mathrm{E}+0$	1．77E＋+	－0．6	$\begin{aligned} & \text { هن犬 } \end{aligned}$	Ingestion	1．76E＋	1．77E＋0	－0．6\％
	Inhalation	$4.28 \mathrm{E}+0$	4．30E＋03	0.5		Inhalation	$1.66 \mathrm{E}+$	1．66E＋0	0．0\％
	External	$3.83 E+00$	$3.84 \mathrm{E}+0$	－0．3\％		External	3．83E＋	3．84E＋0	－0．3\％
	Total	$3.82 \mathrm{E}+00$	3．83E＋00	－0．3\％		Total	3．83E＋0	3．83E＋00	0．0\％
m	Ingestion				꼬	Ingestion			
	Inhelation	4．13E＋00	4．13E＋00｜	0．0\％		Inhalation	4．13E＋00	4．13E＋00	0．0\％
	External					External			
	Total	$4.13 \mathrm{E}+00$	4．13E＋00	0．0\％		Total	$4.13 \mathrm{E}+00$	$4.13 \mathrm{E}+00$	0．0\％
$\begin{aligned} & \infty \\ & \stackrel{\sim}{2} \\ & \stackrel{\infty}{2} \end{aligned}$	Ingestion	$1.045+02$	$1.044+02$	0．0\％	$\stackrel{\text { \％}}{\substack{2}}$	Ingestion	$1.04 E+02$	1．04E＋02	0．0\％
	Inhalation	$7.80 \mathrm{E}+00$	$7.80 \mathrm{E}+00$	．0\％		Inhalation	3．02E＋0	3．02E＋0	0．0\％
	External	3．55E＋05	$3.566+05$	－0．3\％		External	3．55E＋05	$3.53 \mathrm{E}+05$	0．6\％
	Total	$7.25 \mathrm{E}+00$	7．26E＋00	－0．1\％		Total	$2.34 E+01$	$2.34 \mathrm{E}+01$	0．0\％

Incidental ingestion of soil（unpaved roads）
＂PR＂＂G＂＂cw－soi－ing＂＂n（＂pci＂／＂s＂）＂
＂

Inhalation of particulates emitted from soil（unpaved roads）

 ＂＂cw＂＂＂（＂1 yr＂）＂xE＂＂T＂－＂cw＂＂＂（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂24 hrs＂）＂x IR＂＂A＂＿＂cw＂＂＂（（＂60＂＂m＂＾＂3＂）／＂day＂ External exposure to ionizing radiation（unpaved roads）

 GStal（unpaved roads）
＂PR＂＂G＂＿＂cw－soil－tot＂＂＂（＂pCi＂＂＇g＂）＂＝＂＂1＂／（ト＂1＂／（＂PR＂＂G＂＿＂cw－soil－ing＂H＂＋＂＂1＂／（＂PR＂＂G＂＿＂cw－soil－inh＂

Incidental ingestion of soil（other than unpaved roads）
 Inhalation of particulates emitted from soil（other the unaved（ $51000 \mathrm{mg}^{\prime \prime}$ ）
 ＂PR＂＂G＂－＂cw－soil－inh－sa＂＂＂（＂pci＂／＇g＂）＂＂＝＂（＂TRx＂＂t＂＂cw＂＂x＂ S＂＂F＂＿＂i＂＂＂（＂risk＂／＂pCi＂）＂x E＂＂F＂＿＂cw＂＂＂（＂E＂＂W＂＿＂cw＂＂ 50 weeks＂／＂yr＂＂x D＂＂W＂＿＂cw＂＂5 days＂／＂week＂ External

External exposure to ionizing radiation（other than unpaved roads）

 ／＂24 hrs＂）＂x GS＂＂F＂＿－＂＂＂＂（＂1．0＂）＂\times AC＂＂F＂＿＂ext－sv＂） Total（other than unpaved roads）
PR＂＂－cw－soil－tot－sa＂＂＂（＂pCi＂／＂g＂）＂＝＂＂1＂／（ト＂1＂／（＂PR＂＂G＂＂cw－soil－ing－sa＂H＂＋＂＂1＂／（＂PR＂＂G＂
＂cw－soil－inh－sa＂）＂＋＂＂1＂／（＂PR＂＂G＂＂cw－soil－ext－sa＂｜）

 （

$\left.\left.\left(m^{\wedge} 2-s\right)\right)\right)-1$

人＂J＂ x $87 \overline{600}$＂（＂hr＂＂＂yr＂）
 ＂＂A＂＂－＂excav＂＂＂（＂m＂＾＂2＂）＂x＂＂d＂－＂excav＂＂－＂（＂m＂）＂x＂＂N＂＂－A－dump＂＂x 1000 ＂（＂g＂／＂kg＂）

1000＂＂（＂g＂／＂kg＂）

 EVK＂＂T＂＿＂grade＂＂＂（（＂km＂）＂＝＂＂A＂＿＂c－grade＂＂＂（＂acres＂）＂x 4047 ＂（＂m＂＾＂2＂／＂acre＂）＂x＂＂1＂／（＂B＂＿＂g＂＂（m）＂）＂x＂＂1＂／＂1000＂（＂m＂／＂km＂）＂x＂＂N＂＿＂A－
grade＂
＂LVK＂＂T＂

Particulate Emission Factor－Unpaved Roads

＂VVKT＂（＂km＂）＂＝total vehicles X distance＂（＂km＂／＂day＂）x E＂＂W＂－＂cw＂＂＂（＂weeks＂＂year＂）xD＂＂W＂－＂cw＂＂＂（＂days＂／＂week＂）
＂F＂＿＂D＂＂＂（＂0．18584＂）＂＝0．1852＋＂（＂5．3537＂／＂t＂＿＂c＂）＂＋＂（＂－＂＂9．6318＂／（＂t＂＿－c＂＂＂2＂））
＂t＂＿＂c＂＂＂（＂8400 hr＂）＂＝E＂＂D＂＿＂cw＂＂＂（＂1 yr＂）＂x E＂＂W＂＿＂cw＂＂＂（＂50 wks＂＂＂year＂）＂x x（＂7 days＂／＂week＂）＂x＂（＂24 hrs＂／＂day＂）

Variables	Defaults	Ste－Specific
TR	1．00E－06	Calculated \＆
t（cw）	1	site－Specific
EF（cw）	250	
EW（cw）	50	
DW（cw）	5	
ED（cw）	1	
ET（cw）	8	
IRA（cw）	60	

	Type	Halfife（y）	λ	$1-$ exp $(-\lambda t($（cw）	SF（sub）	SF（i）	GSF（o）
Am－241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$1.60 \mathrm{E}-03$	$5.81 \mathrm{E}-11$	$3.77 \mathrm{E}-08$	$1.00 \mathrm{E}+00$
Co－60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$1.23 \mathrm{E}-01$	$1.13 \mathrm{E}-08$	$1.01 \mathrm{E}-10$	$1.00 \mathrm{E}+00$
H－3	M	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$5.48 \mathrm{E}-02$	$0.00 \mathrm{E}+00$	$8.47 \mathrm{E}-13$	$1.00 \mathrm{E}+00$
Pu－238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$7.87 \mathrm{E}-03$	$2.56 \mathrm{E}-13$	$5.22 \mathrm{E}-08$	$1.00 \mathrm{E}+00$

	With Halfife Decay			Without Halfife Decay		
	Inhalation	External	Total	Inhalation	External	Total
Am－241	1．60E－09	1．60E－09	$1.00 \mathrm{E}+00$｜	1．00E－06	1．00E－06	1．00E＋00
	3．02E－07	$2.13 \mathrm{E}-14$	$1.88 \mathrm{E}+02$｜	$1.89 \mathrm{E}-04$	1．33E－11	1．89E＋02
	5．31E－03	7．54E＋04	5．31E－031	5．31E－03	7．54E＋04	5．31E－03
Co－60	1．31E－07	1．31E－07	1．00E＋00	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	6．22E－08	3．18E－10	4．76E－01	5．05E－07	2．58E－09	5．08E－01
	$2.11 \mathrm{E}+00$	$4.14 \mathrm{E}+02$	$2.10 \mathrm{E}+001$	$1.98 \mathrm{E}+00$	$3.88 \mathrm{E}+02$	1．97E＋00
H－3	5．63E－08		1．00E＋00	1．00E－06		$1.00 \mathrm{E}+00$
	2．32E－10		4．12E－031	4．24E－09		$4.24 \mathrm{E}-03$
	2．43E＋02		$2.43 \mathrm{E}+02$	$2.36 \mathrm{E}+02$		$2.36 \mathrm{E}+02$
Pu－238	7．90E－09	7．90E－09	$1.00 \mathrm{E}+00 \mathrm{l}$	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	2．05E－06	4．60E－16	$2.60 \mathrm{E}+02$	2．61E－04	5．84E－14	$2.61 \mathrm{E}+02$
	3．85E－03	1．72E＋07	3．85E－03	3．83E－03	$1.71 \mathrm{E}+07$	3．83E－03
			Calculated	PRG	\％Differ．	
	$\underset{\substack{\text { ¢ } \\ \text { ¢ }}}{\text { ¢ }}$	Inhalation	5．31E－03	5．30E－03	0．2\％	
		External	$7.54 \mathrm{E}+04$	7．55E＋04	－0．1\％	
		Total	5．312－03	5．30E－03	0．2\％	
		Inhalation	5．31E－03	5．30E－03	0．2\％	
		External	7．54E＋04	7．55E＋04	－0．1\％	
		Total	5．31E－03	5．30E－03	0．2\％	
	¢	Inhalation	$2.11 \mathrm{E}+00$	$2.12 \mathrm{E}+00$	－0．5\％	
		External	$4.14 \mathrm{E}+02$	$4.16 \mathrm{E}+02$	－0．5\％	
		Total	2．10E＋00	$2.11 \mathrm{E}+00$	－0．5\％	
		Inhalation	$1.98 \mathrm{E}+00$	$1.99 \mathrm{E}+00$	－0．5\％	

Inhalation（with half－life decay）
PR＂＂G＂＿＂cw－air－inh－decay＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR x＂＂t＂＂cw＂

（＂risk＂／＂pCi＂）＂x E＂＂F＂＿＂cw＂＂＂（＂E＂＂W＂＿＂cw＂＂＂＂ 50 weeks＂／＂yr＂＂x
D＂＂W＂＿＂cw＂＂5 days＂／＂week＂）＂x E＂＂D＂＿＂cw＂＂＂（＂1 yr＂）＂x E＂＂T＂＿＂cw＂＂
（＂8 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hours＂）x xR＂A＂cw＂（（＂60＂＂m＂＾＂3＂）／＂day＂））
External exposure to ionizing radiation（with half－life decay）
＂PR＂＂G＂＿＂cw－air－sub－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR x＂＂t＂＿＂cw＂
＂（＂yr＂）＂x λ＂（＂1＂／＂yr＂）H／（（＂1－＂＂e＂＾（＂－$\lambda^{\prime \prime}$＂t＂＿＂cw＂））＂x S＂＂F＂＿＂sub＂＂＂
（＂risk／yr＂／（＂pCi／＂＂m＂＾＂3＂＂＂））＂x E＂＂F＂＿＂cw＂＂＂（＂E＂＂W＂＿＂cw＂＂＂＂ 50 weeks＂
／＂yr＂＂x D＂＂W＂＿＂cw＂＂5 days＂／＂week＂）＂x＂（＂1 yr＂／＂365 days＂）＂x E＂＂D＂＿＂cw＂＂
（1yr＂）xE＂T＂＿cw＂（8 hr＂／＂day＂）＂x＂（1 day＂／＂24 hours＂）＂x GS＂＂F＂＿＂a＂＂＂（＂1．0＂）
Total（with half－life decay）
PR＂G＿cw－air－tot－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＿＂cw－air－inh－decay＂）
（（PR G＿cw－air－sub－decay＂））

Inhalation（without half－life decay）

PR＂＂G＿＂cw－air－inh－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂－＂TR＂－－／（＂S＂＂F＂＿＂i＂＂＂（＂risk＂／＂pCi＂）＂
＂＂＂＂ 50 weeks＂／＂yr＂＂x D＂＂W＂＂cw＂＂ 5 －days＂／＂week＂）＂x E＂＂D＂
＂cw＂＂－＂（＂1 yr＂）＂x E＂＂T＂＿＂cw＂＂＂（＂8 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hours＂）＂x IR＂＂A＂－＂cw＂＂＂（（＂60＂＂m＂
＂3＂）／＂day＂））

external exposure to ionizing radiation（without half－life decay）

＂PR＂＂G＂＿＂cw－air－sub－nodecay＂＂＂（＂pCi＂＂＂m＂＾＂3＂）＂＝＂ト＂TR＂－／／（＂S＂＂F＂＿＂sub＂＂＂（＂risk／yr＂／
＂pCi／＂＂m＂＾＂ 3 ＂＂＂＂））＂x E＂＂F＂＂cw＂＂＂（＂E＂＂W＂＂cw＂＂＂＂ 50 weeks＂／＂yr＂＂x x＂＂W＂＂cw＂＂5 days＂
／＂week＂）＂x＂（＂1 yr＂／＂ 365 days＂）＂x E＂＂D＂＂cw＂＂＂（＂1 yr＂）＂x E＂＂T＂＂cw＂＂＂（＂8 hr＂／＂day＂）＂x＂（＂1 day＂ ／＂24 hours＂）＂x GS＂＂F＂＂a＂＂＂（＂1．0＂））
Total（without half－life decay）
PR＂＂G＂＂cw－air－tot－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＂cw－air－inh－nodecay＂）＂
＂＂1＂／（＂PR＂＂G＂＿＂cw－air－sub－nodecay＂））

			Exter	nal Expos				
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)
Am-241	M	$1.87 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.38E-08	$2.58 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.32E-13	5.81E-11
Co-60	M	$2.19 \mathrm{E}-06$	$1.24 \mathrm{E}-05$	2.26E-06	$6.49 \mathrm{E}-06$	1.04E-05	$2.44 \mathrm{E}-11$	1.13E-08
H-3	V	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00
H-3	M	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00
Pu-238	M	$3.68 \mathrm{E}-10$	$6.92 \mathrm{E}-11$	4.81E-11	6.30E-11	6.87E-11	5.96E-16	2.56E-13

Ingestion					
	Type	SF(w)	SF(f)	SF(s)	Soil Worker
Am-241	M	$1.04 \mathrm{E}-10$	$1.34 \mathrm{E}-10$	$1.84 \mathrm{E}-10$	$9.10 \mathrm{E}-11$
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	$3.81 \mathrm{E}-11$	$7.33 \mathrm{E}-12$
$\mathrm{H}-3$	V	$5.07 \mathrm{E}-14$	$6.51 \mathrm{E}-14$	$8.99 \mathrm{E}-14$	$4.51 \mathrm{E}-14$
$\mathrm{H}-3$	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$

Inhalation		
	Form	SF(i)
Am-241	F	3.77E-08
Am-241	M	$2.81 \mathrm{E}-08$
Am-241	S	3.54E-08
Co-60	F	$1.71 \mathrm{E}-11$
Co-60	M	$3.59 \mathrm{E}-11$
Co-60	S	$1.01 \mathrm{E}-10$
H-3	F	$1.95 \mathrm{E}-14$
H-3	M	$1.99 \mathrm{E}-13$
H-3	S	8.47E-13
H-3	v	$5.62 \mathrm{E}-14$
H-3	j(elementa	$5.62 \mathrm{E}-18$
H-3	G(organic)	$1.28 \mathrm{E}-13$
Pu-238	F	$5.22 \mathrm{E}-08$
Pu-238	M	$3.36 \mathrm{E}-08$
Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}{ }^{\wedge}$	$20 \mathrm{~m}^{\wedge} 2$	50 m 2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 m^{\wedge} 2$	Infinite
Am-241	$8.40 \mathrm{E}-02$	1.50E-01	2.70E-01	3.90E-01	5.10e-01	6.50E-01	$7.40 \mathrm{E}-01$	8.10E-01	8.70E-01	9.10E-01	9.30E-01	9.50E-01	9.80E-01	$9.90 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	5.20E-02	9.80E-02	$1.50 \mathrm{E}-01$	2.10E-01	$2.90 \mathrm{E}-01$	$3.70 \mathrm{E}-01$	4.40E-01	5.40E-01	5.90E-01	6.60E-01	$7.40 \mathrm{E}-01$	8.10E-01	$8.70 \mathrm{E}-01$	$9.10 \mathrm{E}-01$	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$												
Pu-238	1.00E-01	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	$7.80 \mathrm{E}-01$	8.70E-01	9.40E-01	9.90E-01	$1.00 \mathrm{E}+00$							
								Soil Volu									
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge}$	$5 \mathrm{~m}^{\wedge}$	$10 \mathrm{~m}{ }^{2}$	20 m 2	50 m 2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge}$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	1.90E-01	3.20E-01	4.80E-01	5.50E-01	6.60E-01	$6.90 \mathrm{E}-01$	7.50E-01	7.40E-01	8.20E-01	8.70E-01	9.10E-01	$1.10 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	1.80E-01	3.30E-01	4.90E-01	5.90e-01	7.00E-01	7.40E-01	7.60E-01	7.10e-01	9.30E-01	8.50E-01	8.80E-01	9.20E-01	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	1.00E+00	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$						
Pu-238	$1.80 \mathrm{E}-01$	2.80E-01	5.90E-01	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	9.40E-01	9.70e-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

Variables	Defaults
TR	1．00E－06
IFF（fadi）	2262400
IFV（f．adj）	1589350
EF（f－c）	350
ED（f．c）	6
IRF（f－c）	68.1
EFF（－a）	350
ED（f－a）	34
IRF（f－a）	178.1
$\operatorname{RRV}(\mathrm{fc}$ c）	41.7
IRV（f－a）	126.2
CPF（f）	1
${ }_{\text {IFP（fiadj）}}$	1316910
$\operatorname{IRP}(f-c)$	23.6
$\operatorname{IRP}(\mathrm{f}-\mathrm{a})$	106.5
CFF（po）	1
IFE（fadi）	657265
IRE（f－c）	10.95
IRE（fa）	53.3
CF（egg）	1
IFB（ffadj）	2222640
IRB（f－c）	40.1
$\mathrm{IRB}(\mathrm{f}-\mathrm{a})$	179.7
CF（beef）	1
IFD（f－adj）	6036590
$\operatorname{IRD}(\mathrm{ffc})$	349.5
IRD（f－a）	445.6
CF（dairy）	1
IFSW（f－adi）	1202670
IRSW（f－c）	18.5
IRSW（f－a）	97.8
CFFsw）	1
IFFI（fadj）	1932420
IRFI（f－c）	32.8
IRFI（f－a）	156.6
CFf（ish）	1

	Type	Halfifife（y）	λ	SF（f）
Am－241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$1.34 \mathrm{E}-10$
Co－60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$2.2 \mathrm{E}-11$
$\mathrm{H}-3$	M	$1.2 \mathrm{E}++01$	$5.63 \mathrm{E}-02$	$1.4 \mathrm{EL}-13$
$\mathrm{H}-3$	V	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$6.51 \mathrm{E}-14$
Pu－238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$1.69 \mathrm{E}-10$

		Fruits \＆ Vegetables	Poultry	Eggs	Beef	Milk	Swine	Fish	
Am－241	M	1．00E－06							
		5．11E－04	1．76E－04	8．81E－05	$2.98 \mathrm{E}-04$	$8.09 \mathrm{E}-04$	1．61E－04	2．59E－04	
		$1.96 \mathrm{E}-03$	5．67E－03	1．14E－02	3．36E－03	1．24E－03	6．21E－03	3．86E－03	
Co－60	M	1．00E－06	1．00E－06	1．00E－06	1．00E－06	$1.00 \mathrm{E}-06$	1．00E－06	1．00E－06	
		8．50E－05	$2.94 \mathrm{E}-05$	1．47E－05	4．96E－05	1．35E－04	2．68E－05	4．31E－05	
		1．18E－02	3．41E－02	6．82E－02	2．02E－02	7．43E－03	3．73E－02	2．32E－02	
H－3	M	1．00E－0	1．00E－06	1．00E－06	1．00E－06	1．00E－06	1．00E－06	1．00E－06	
		5．49E－07	1．90E－07	$9.46 \mathrm{E}-08$	3．20E－07	8．69E－07	$1.73 \mathrm{E}-07$	2．78E－07	
		1．82E＋00	5．27E＋00	1．06E＋01	3．12E＋00	$1.15 \mathrm{E}+00$	5．77E＋00	3．59E＋00	
H－3	v	1．00E－06							
		2．48E－07	8．57E－08	$4.28 \mathrm{E}-08$	1．45E－07	3．93E－07	7．83E－08	1．26E－07	
		$4.03 \mathrm{E}+00$	1．17E＋01	$2.34 \mathrm{E}+01$	6．91E＋00	$2.54 \mathrm{E}+00$	$1.28 \mathrm{E}+01$	7．95E＋00	
Pu－238	M	1．00E－06							
		6．44E－04	$2.23 \mathrm{E}-04$	1．11E－04	3．76E－04	1．02E－03	$2.03 \mathrm{E}-04$	3．27E－04	
		1．55E－03	4．49E－03	9．00E－03	2．66E－03	9．80E－04	4．92E－03	3．06E－03	
		Calculated	PRG	\％Differ．			Calculated	PRG	\％Differ．
	F\＆V	1．96E－03	1．94E－03	1．0\％	$\stackrel{m}{ \pm}$	F\＆V	$1.82 \mathrm{E}+00$	$1.80 \mathrm{E}+00$	1．1\％
	Poultry	5．67E－03	5．69E－03	－0．4\％		Poultry	5．27E＋00	5．27E＋00	0．0\％
	Eggs	1．14E－02	1．14E－02	0．0\％		Eggs	$1.06 \mathrm{E}+01$	1．06E＋01	0．0\％
	Beef	3．36E－03	3．37E－03	－0．3\％		Beef	3．12E＋00	3．12E＋00	0．0\％
	Milk	$1.24 \mathrm{E}-03$	1．24E－03	0．0\％		Milk	$1.15 \mathrm{E}+00$	$1.15 \mathrm{E}+00$	0．0\％
	Swine	6．21E－03	6．23E－03	－0．3\％		Swine	$5.77 \mathrm{E}+00$	$5.77 \mathrm{E}+00$	0．0\％
	Fish	3．86E－03	3．87E－03	－0．3\％		Fish	$3.59 \mathrm{E}+00$	$3.59 \mathrm{E}+00$	0．0\％
نٌ	F\＆V	1．18E－02	1．16E－02	1．7\％	$\begin{aligned} & \stackrel{\infty}{\sim} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	F\＆V	1．55E－03	1．53E－03	1．3\％
	Poultry	3．41E－02	3．40E－02	0．3\％		Poultry	$4.49 \mathrm{E}-03$	4．48E－03	0．2\％
	Eggs	6．82E－02	6．82E－02	\％		Eggs	$9.00 \mathrm{E}-03$	8．98E－03	0．2\％
	Be	2．02E－02	2．02E－02	0．0\％		硣	$2.66 \mathrm{E}-03$	2．65E－03	0．4\％
	M	7．43E－03	7．42E－03	0．1\％		Milk	$9.80 \mathrm{E}-04$	9．78E－04	0．2\％
	Swine	3．73E－02	3．73E－02	0．0\％		Swine	$4.92 \mathrm{E}-03$	4．91E－03	0．2\％
	Fish	2．32E－02	$2.32 \mathrm{E}-02$	0．0\％		Fish	3．06E－03	3．05E－03	0．3\％

onsumption of fruits and vegetable

PR＂＂G＂＿＂f－prod－ing＂＂＂（＂pCi＂／＇g＂）＂＝＂＂TR＂／（＂S＂＂F＂＿＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂（＂IF＂＂F＂＿＂f－adj＂＂＂（＂2，262，400 g＂ ＂＋1F＂＂V＂．＂f－adj＂＂＂（＂1，589，350 g＂））＂x CP＂＂F＂＿＂f＂＂＂（＂1．0＂））
IF＂＂F＂＂＂f－adj＂＂＂（＂2，262，400 g＂）＂＝＂（＂E＂＂F＂＿＂f－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＿＂f－c＂＂＂（＂6 yr＂）＂x IR＂＂F＂＿＂f－c＂
 ＂day＂）
＂F＂＂F＂＿＂f－adj＂＂＂（＂1，589，350 g＂）＂＝＂（＂E＂＂F＂＂f－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＂f－c＂＂＂（＂6 yr＂）＂x IR＂＂V＂＂f－c＂ ＂（＂41．7 g＂／＂day＂））＂＋＂（＂E＂＂F＂－＂f－a＂＂＂（＂350－day＂／＂yr＂）＂x E＂＂D＂＿＂f－a＂＂＂（＂34－ ＂day＂）
PR＂＂G＂＿＂f－po－ing＂＂＂（＂pCi＂／＇g＂）＂＝＂＂TR＂／（＂S＂＂F＂＿＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂F＂IF＂＂P＂＿＂f－adj＂＂＂（＂1，136，910 g －＂x C＂＂F＂＂．＂po＂＂＂＂（＂1．0＂））
＂IF＂＂P＂＂－＂－－adj＂＂＂（＂1，136，910 g＂）＂＝＂（＂E＂＂F＂＿＂f－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＿＂f－c＂＂＂（＂6 yr＂）＂x IR＂＂P＂＿＂f－c＂ ＂＂（＂23．6－g＂／＂day＂））＂＋＂（＂E＂＂F＂＿＂f－a＂＂＂（＂350 day＂／＂Yr＂）＂x E＂＂D＂＿＂f－a＂＂＂（＂34 yr＂）＂x IR＂＂P＂＿＂f－a＂＂＂（＂106．5 g＂ ／＂day＂）
Consumption of egs
＂ H＂x C＂＂F＂＂－＂egg＂＂＂（＂1．0＂） （＂day＂））
Consumption of beef
RR＂＂G＂－＂f－beef－ing＂＂＂（＂pCi＂／＂g＂）＂＝＂＂TR＂／（＂S＂＂F＂＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂卜＂F＂＂B＂＂f－adj＂＂＂（＂2，222，640 s＂H－＂x＂＂＂F＂＿＂beef＂＂＂（＂1．0＂））
＂＝＂（＂E＂＂F＂＂f－c＂＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＂f－c＂＂＂（＂6 yr＂）＂x IR＂＂B＂＂f－c＂ （＂40．1g（
＂PR＂＂G＂＿＂f－dairy－ing＂＂＂（＂pCi＂／＂g＂）＂＝＂＂TR＂／（＂S＂＂F＂＿＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂ト＂IF＂＂D＂＿＂f－adj＂＂＂（＂6，036，590

IF＂＂D＂＿＂f－adj＂＂＂（＂6，036，590 g＂）＂＝＂（＂E＂＂F＂＿＂f－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＿＂f－c＂＂＂（＂6 yr＂）＂x IR＂＂D＂＿＂f－c＂ ＂（＂349．5 s＂／＂day＂））＂＋＂（＂E＂＂F＂＂f－a＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＂f－a＂＂＂（＂34 yr＂）＂x xR＂＂D＂＿＂f－a＂＂．＂（＂445．6 ＂／＂day＂）
of swine
PR＂＂G＂＂f－sw－ing＂＂＂（＂pCi＂／＂g＂）＂＝＂＂TR＂／（＂S＂＂F＂＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂－＂IF＂［＂SW＂
）＂f－adj＂＂＂（＂1，202，670 ＂f－c＂＂＂（＂18．5 g＂／＂day＂））＂＋＂（＂E＂＂F＂＿＂f－a＂＂＂（＂350 day＂／＂yr＂）＂x ＂（＂97．8 g＂／＂day＂）
Consumption of fish
PR＂＂G＂＿＂f－fish－ing＂＂＂（＂pCi＂／＇g＂）＂＝＂＂TR＂／（＂S＂＂F＂＿＂f＂＂＂（＂risk＂／＂pCi＂）＂x＂ト－＂F＂［＂FI＂］＿＂f－adj＂＂＂（＂1，932，420 ＂）－＂xC＂＂F＂＂fish＂＂＂（＂1．0＂））
 （＂156．6 g＂／＂day＂））

Variales	Defauts
${ }^{\text {тR}}$	${ }^{1.00 \text { E.06 }}$
IFW(f adi)	31388
Eff(c)	350
Eblfec)	6
Rew(fec)	0.78
Ef(t-a)	350
Eb(f:-a)	34
IRW(f-a)	2.5
Ifa(fadid)	259000
ET(F.C)	24
Rraflec)	10
EITf:-a)	24
IRAf(fa)	20
k	0.5
DFAP(tasid)	9583
EV(fec)	1
tf(ceevent)	0.54
Ev(fara)	1
tffa-event)	0.71
l(r)	3.62
F	0.25
${ }_{\text {t }}$ (b)	10950
p	240
MLF	0.26
(f)	0.42
T	1
t(v)	60
Y(V)	2
Q(w-po)	0.4
Q(w-po)	0.4
a(w-beef	53
$\rho(m)$	0.970873786
a(w-dair)	92
$a^{\text {a }}$ (w,sw)	11.4
$\lambda(\mathrm{HL})$	0.000027

 Inhatation (Only calculated for $\mathrm{C}-14, \mathrm{H}-3, \mathrm{Ra}-224, \mathrm{Ra}-226$, and $\mathrm{R}-226+\mathrm{D})$

Immersion
 event")" "+" " "E"F"_"t-a"

Consumption of fruits and vegetables

 Consumption of eggs

Consumption poultry

Consumption of beef

Consumption of swine

Incidental ingestion of soil

"kg") ("350 day" $/$ "rr" " " \times E" "D"

${ }^{\text {Consumption of egss }}$

Consuption poultry
 "R" "up" "=B" " " " $"$ "
Consumption of fish

Consumption of mik
 $=$ MLF $(0.25)^{\prime \prime}$
Consumption

Variables	Defaults		Type	Halflife (y)	λ	$1-\exp (-\lambda t(\mathrm{cw}))$	SF（i）	SF（sub）	GSF（a）
TR	$1.00 \mathrm{E}-06$	Am－241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$6.22 \mathrm{E}-02$	$3.77 \mathrm{E}-08$	$5.81 \mathrm{E}-11$	$1.00 \mathrm{E}+00$
$\mathrm{t}(\mathrm{f})$	40	$\mathrm{Co}-60$	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$1.01 \mathrm{E}-10$	$1.13 \mathrm{E}-08$	$1.00 \mathrm{E}+00$
$\mathrm{IFA}(\mathrm{r}-\mathrm{adj})$	259000	$\mathrm{H}-3$	M	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$8.95 \mathrm{E}-01$	$8.47 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
$\mathrm{EF}(\mathrm{f}-\mathrm{c})$	350	$\mathrm{H}-3$	V	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$8.95 \mathrm{E}-01$		$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
$\mathrm{ED}(\mathrm{f}-\mathrm{c})$	6	Pu－238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$2.71 \mathrm{E}-01$	$5.22 \mathrm{E}-08$	$2.56 \mathrm{E}-13$	$1.00 \mathrm{E}+00$
$\mathrm{ET}(\mathrm{f}-\mathrm{c})$	24								

ED（f－c）	
ET（f－c）	24
IRA（f－c）	10
EF（f－a）	350
ED（f－a）	34
ET（f－a）	24
IRA（f－a）	20
EF（f）	350
ED（f）	40
ET（f）	24

Farmer Air						
	With Halflife Decay			Without Halflife Decay		
	Inhalation	External	Total	I Inhalation	External	Total
Am－241	6．42E－08	6．42E－08	$1.00 \mathrm{E}+00$	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	6．07E－04	$1.39 \mathrm{E}-10$	$9.46 \mathrm{E}+03$	$9.76 \mathrm{E}-03$	2．23E－09	$9.76 \mathrm{E}+03$
	1．06E－04	4．63E＋02	1．06E－04	1．02E－04	$4.49 \mathrm{E}+02$	1．02E－04
Co－60	5．26E－06	5．26E－06	$1.00 \mathrm{E}+00$	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	$2.60 \mathrm{E}-05$	$4.31 \mathrm{E}-07$	5．03E＋00	2．62E－05	$4.33 \mathrm{E}-07$	$2.66 \mathrm{E}+01$
	2．02E－01	1．22E＋01	$1.99 \mathrm{E}-01$	3．82E－02	2．31E＋00	3．76E－02
H－3	2．25E－06		$1.00 \mathrm{E}+00$	1．00E－06		$1.00 \mathrm{E}+00$
	1．96E－07		8．71E－02	$2.19 \mathrm{E}-07$		2．19E－01
	$1.15 \mathrm{E}+01$		1．15E＋01	$4.56 \mathrm{E}+00$		$4.56 \mathrm{E}+00$
Pu－238	3．16E－07	3．16E－07	$1.00 \mathrm{E}+00$	1 1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	3．66E－03	$2.66 \mathrm{E}-12$	$1.16 \mathrm{E}+04$	1．35E－02	9．82E－12	$1.35 \mathrm{E}+04$
	8．63E－05	1．19E＋05	8．63E－05	7．40E－05	1．02E＋05	7．40E－05
			Calculated	PRG	\％Differ．	

Inhalation（with half－life decay）

＂PR＂＂G＂＂f－air－inh－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂+ ＂TR x＂＂t＂＂f＂＂＂（＂yr＂）＂x λ＂（＂1＂ ／＂yr＂）－／（（＂1－＂＂e＂＾（＂－${ }^{\prime \prime}$＂tt＂＂f＂））＂x SFi＂（＂risk＂／＂pCi＂）＂x IF＂＂A＂＂f－adj＂＂＂（＂161，000 ＂m＂＾＂3＂））＂IF＂＂A＂＂f－adj＂＂＂＂（＂161，000＂＂m＂＾＂3＂）＂＝＂（＂E＂＂F＂＂f－c＂＂＂（＂350 day＂／＂rr＂） x E＂＂D＂＂f－c＂＂＂（＂ 6 yr＂）＂x E＂＂T＂＂f－c＂＂＂（＂ 24 hr＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hrs＂）＂x IR＂＂A＂

 （（＂20＂＂m＂＾＂3＂）／＂day＂）

External exposure to ionizing radiation（with half－life decay）

＂PR＂＂G＂＿＂f－air－sub－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR x＂＂t＂＿＂f＂＂＂（＂yr＂）＂x λ＂（＂1＂
 E＂＂F＂＂f＂＂＂（＂350 day＂／＂yr＂）＂x＂（ 1 ＂ 1 yr＂- ／＂ 365 days＂$)$＂x E＂＂D＂＂f＂＂＂（＂40 yr＂）＂x E＂＂T＂ ＂f＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hrs＂）＂x GS＂＂F＂＂a＂＂＂（＂1．0＂）
Total（with half
＂PR＂＂G＂＂f－air－tot－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＿＂f－air－inh－decay＂） ＂＋＂＂1＂／（＂PR＂＂G＂＿＂f－air－sub－decay＂）＂＂）

Inhalation（without half－life decay）

＂PR＂＂G＂＂f－air－inh－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂+ ＂TR＂$-/($＂SFi＂（＂risk＂／＂pCi＂）＂x IF＂＂A＂ ＂f－adj＂＂＂（＂259，000＂＂m＂＾＂3＂））＂IF＂＂A＂＂f－adj＂＂＂（＂259，000＂＂m＂＾＂3＂）＂＝＂（＂E＂＂F＂＂f－c＂＂ （＂350 day＂／＂yr＂）＂x E＂＂D＂＂f－c＂＂＂（＂6 yr＂）＂x E＂＂T＂＂f－c＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂2 hrs＂）＂x IR＂＂A＂＿＂f－c＂＂＂（（＂10＂＂m＂＾＂3＂）／＂day＂））＂＋＂（【＂EF＂§＿＂f－a＂＂＂（＂350 day＂／＂yr＂）＂x＂『 ＂ED＂§＿＂f－a＂＂＂（＂34 yr＂）＂x＂［＂ET＂§＿＂f－a＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hrs＂）＂x＂『＂IRA＂】 ＂f－a＂＂＂（（＂20＂＂m＂＾＂ 3 ＂）／＂day＂）

$\frac{\text { External exposure to ionizing radiation（without half－life decay）}}{\text {＂PR＂＂G＂＂f－air－sub－niz }}$

＂PR＂＂G＂＿＂f－air－sub－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR＂†／（＂S＂＂F＂＿＂sub＂＂＂（（＂risk＂／＂yr＂ ）／（＂pCi＂／＂m＂＾＂3＂））＂x E＂＂F＂＿＂f＂＂＂（＂350 day＂／＂yr＂）＂x＂（ + ＂ 1 yr＂$+/$／＂ 365 days＂）＂x E＂＂D＂＿＂f＂＂ （＂40 yr＂）＂x E＂＂T＂＂－f＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hrs＂）＂x GS＂＂F＂＿＂a＂＂＂（＂1．0＂）） Total（without half－life decay）
＂PR＂＂G＂＿＂f－air－tot－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＿＂f－air－inh－nodecay＂） ＂＋＂＂1＂／（＂PR＂＂G＂＿＂f－air－sub－nodecay＂）＂＂）

External Exposure								
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)
Am-241	M	1.87E-08	$2.77 \mathrm{E}-08$	1.38E-08	$2.58 \mathrm{E}-08$	2.77E-08	$1.32 \mathrm{E}-13$	5.81E-11
Co-60	M	2.19E-06	$1.24 \mathrm{E}-05$	2.26E-06	6.49E-06	1.04E-05	$2.44 \mathrm{E}-11$	$1.13 \mathrm{E}-08$
H-3	V	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
H-3	M	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$
Pu-238	M	$3.68 \mathrm{E}-10$	$6.92 \mathrm{E}-11$	4.81E-11	6.30E-11	6.87E-11	5.96E-16	2.56E-13

Ingestion					
	Type	SF(w)	SF(f)	SF(s)	Soil Worker
Am-241	M	$1.04 \mathrm{E}-10$	$1.34 \mathrm{E}-10$	$1.84 \mathrm{E}-10$	$9.10 \mathrm{E}-11$
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	$3.81 \mathrm{E}-11$	$7.33 \mathrm{E}-12$
H-3	V	$5.07 \mathrm{E}-14$	$6.51 \mathrm{E}-14$	$8.99 \mathrm{E}-14$	$4.51 \mathrm{E}-14$
H-3	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$

Inhalation Form		
Am-241	F	SF(i)
Am-241	M	$2.77 \mathrm{E}-08$
Am-241	S	$3.81 \mathrm{E}-08$
Co-60	F	$1.71 \mathrm{E}-08$
$\mathrm{Co}-60$	M	$3.59 \mathrm{E}-11$
$\mathrm{Co}-60$	S	$1.01 \mathrm{E}-10$
$\mathrm{H}-3$	F	$1.95 \mathrm{E}-14$
$\mathrm{H}-3$	M	$1.99 \mathrm{E}-13$
$\mathrm{H}-3$	S	$8.47 \mathrm{E}-13$
$\mathrm{H}-3$	V	$5.62 \mathrm{E}-14$
$\mathrm{H}-3$	G (elemental)	$5.62 \mathrm{E}-18$
$\mathrm{H}-3$	$\mathrm{G}($ organic	$1.28 \mathrm{E}-13$
Pu-238	F	$5.22 \mathrm{E}-08$
Pu-238	M	$3.36 \mathrm{E}-08$
Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	10 m ^2	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m}^{\wedge} 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$8.40 \mathrm{E}-02$	$1.50 \mathrm{E}-01$	2.70E-01	3.90E-01	5.10E-01	6.50E-01	7.40E-01	8.10E-01	8.70E-01	$9.10 \mathrm{E}-01$	9.30E-01	9.50E-01	9.80E-01	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	5.20E-02	9.80E-02	1.50E-01	2.10E-01	2.90E-01	3.70E-01	4.40E-01	5.40E-01	5.90E-01	6.60E-01	7.40E-01	8.10E-01	$8.70 \mathrm{E}-01$	9.10E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$														
Pu-238	1.00E-01	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	7.80E-01	8.70E-01	9.40E-01	9.90E-01	$1.00 \mathrm{E}+00$							

Soil Volume																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m} \wedge 2$	$20 \mathrm{~m}^{\wedge} 2$	50 m ^2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	1.90E-01	3.20E-01	4.80E-01	5.50E-01	6.60E-01	6.90E-01	7.50E-01	7.40E-01	8.20E-01	8.70E-01	9.10E-01	$1.10 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	1.80E-01	3.30E-01	4.90E-01	5.90E-01	7.00E-01	7.40E-01	7.60E-01	7.10E-01	9.30E-01	8.50E-01	8.80E-01	$9.20 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	5.90E-01	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	9.40E-01	9.70E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

Variables	Defaults		Halflife (y)	λ	1-exp(- $\lambda t(\mathrm{cw})$)	K(d)	PRG	MCL	PRG	MCL			
C(w)	MCL or PRG*DAF	Am-241	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$4.09 \mathrm{E}-02$	$4.00 \mathrm{E}+00$	$3.35 \mathrm{E}-01$	$1.50 \mathrm{E}+01$	$4.61 \mathrm{E}+00$	$2.06 \mathrm{E}+02$			
t	26	Co-60	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$4.80 \mathrm{E}+02$	$2.61 \mathrm{E}+00$	$1.00 \mathrm{E}+02$	$3.59 \mathrm{E}+01$	$1.38 \mathrm{E}+03$			
$\theta(w)$	0.3	H-3	$1.23 \mathrm{E}+01$	5.63E-02	7.69E-01	0.00E+00	$1.37 \mathrm{E}+01$	$2.00 \mathrm{E}+04$	$1.89 \mathrm{E}+02$	$2.75 \mathrm{E}+05$			
$\rho(b)$	1.5	Pu-238	8.77E+01	7.90E-03	$1.86 \mathrm{E}-01$	$5.00 \mathrm{E}+00$	2.70E-01	$1.50 \mathrm{E}+01$	$3.71 \mathrm{E}+00$	$2.06 \mathrm{E}+02$			
DAF	1												
DAF	13.751432				Partitioning						Mass Loadin		
K	10				PRG based	MCL based					PRG based	MCL based	
i	2			Am-241	$1.44 \mathrm{E}-03$	$6.43 \mathrm{E}-02$					$2.42 \mathrm{E}-03$	1.08E-01	
d	0.5738144			Co-60	$4.43 \mathrm{E}+00$	$1.70 \mathrm{E}+02$				Am-241	9.19E-02	$9.19 \mathrm{E}-02$	
I	0.18			H-3	$5.22 \mathrm{E}-03$	$7.62 \mathrm{E}+00$					2.63E-02	$1.18 \mathrm{E}+00$	
L	5			Pu-238	$1.55 \mathrm{E}-03$	8.63E-02					$1.55 \mathrm{E}+00$	$5.94 \mathrm{E}+01$	
d(a)	3				Calculated	PRG	\% Differ.			Co-60	$2.18 \mathrm{E}+00$	$2.18 \mathrm{E}+00$	
ED(gw)	70		Am-241	PRG Based	$1.44 \mathrm{E}-03$	$1.44 \mathrm{E}-03$	0.0\%				7.10E-01	$2.73 \mathrm{E}+01$	
d(s)	1.5			MCL Based	$6.43 \mathrm{E}-02$	$6.43 \mathrm{E}-02$	0.0\%				$3.48 \mathrm{E}+00$	$5.08 \mathrm{E}+03$	
			Co-60	PRG Based	$4.43 \mathrm{E}+00$	$4.43 \mathrm{E}+00$	0.0\%			H-3	$1.73 \mathrm{E}+00$	$1.73 \mathrm{E}+00$	
			Co-60	MCL Based	$1.70 \mathrm{E}+02$	$1.70 \mathrm{E}+02$	0.0\%				$2.01 \mathrm{E}+00$	$2.93 \mathrm{E}+03$	
			H-3	PRG Based	$5.22 \mathrm{E}-03$	$5.23 \mathrm{E}-03$	-0.2\%				$9.61 \mathrm{E}-03$	$5.33 \mathrm{E}-01$	
			H-3	MCL Based	$7.62 \mathrm{E}+00$	$7.61 \mathrm{E}+00$	0.1\%			Pu-238	$4.18 \mathrm{E}-01$	$4.18 \mathrm{E}-01$	
			Pu-238	PRG Based	$1.55 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	0.0\%				2.30E-02	$1.28 \mathrm{E}+00$	
			Pu-238	MCL Based	8.63E-02	$8.63 \mathrm{E}-02$	0.0\%				Calculated	PRG	\% Differ.
									Am-241	PRG Based	$2.63 \mathrm{E}-02$	$2.63 \mathrm{E}-02$	0.0\%
Partitioning										MCL Based	$1.18 \mathrm{E}+00$	$1.18 \mathrm{E}+00$	0.0\%
"SSL " ("pCi" /"g")"=" "C" _"w" " " ("pCi" /"L")" x " ["10" \^"-3" " " ("kg" /"g")" x (" "K" _"d"									Co-60	PRG Based	$7.10 \mathrm{E}-01$	7.10E-01	0.0\%
										MCL Based	$2.73 \mathrm{E}+01$	$2.72 \mathrm{E}+01$	0.4\%
"C" _"w" "=MCL or " ("PRG x DAF")									H-3	PRG Based	$2.01 \mathrm{E}+00$	$2.01 \mathrm{E}+00$	0.0\%
										MCL Based	$2.93 \mathrm{E}+03$	$2.93 \mathrm{E}+03$	0.0\%
Mass Load									Pu-238	PRG Based	$2.30 \mathrm{E}-02$	$2.30 \mathrm{E}-02$	0.0\%
"SSL " ("pCi" /"g")"=" ("C" _"w" " " ("pCi" /"L") x l " ("m" /"yr")" x E" "D" _"gw" " " ("70 yr"										MCL Based	$1.28 \mathrm{E}+00$	$1.28 \mathrm{E}+00$	0.0\%

External Exposure								
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)
Am-241	M	$1.87 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.38E-08	$2.58 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.32E-13	5.81E-11
Co-60	M	2.19E-06	$1.24 \mathrm{E}-05$	2.26E-06	6.49E-06	1.04E-05	$2.44 \mathrm{E}-11$	$1.13 \mathrm{E}-08$
H-3	V	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00
H-3	M	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Pu-238	M	3.68E-10	$6.92 \mathrm{E}-11$	4.81E-11	6.30E-11	$6.87 \mathrm{E}-11$	5.96E-16	$2.56 \mathrm{E}-13$

		Ingestion							
	Type	SF(w)	SF(f)	SF(s)	Soil Worker				
Am-241	M	$1.04 \mathrm{E}-10$	$1.34 \mathrm{E}-10$	$1.84 \mathrm{E}-10$	$9.10 \mathrm{E}-11$				
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	$3.81 \mathrm{E}-11$	$7.33 \mathrm{E}-12$				
H-3	V	$5.07 \mathrm{E}-14$	$6.51 \mathrm{E}-14$	$8.99 \mathrm{E}-14$	$4.51 \mathrm{E}-14$				
H-3	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$				
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$				

Soil Volume																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}{ }^{\wedge}$	$20 \mathrm{~m}^{\wedge} 2$	50 m ^2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	$1.90 \mathrm{E}-01$	3.20E-01	4.80E-01	5.50E-01	$6.60 \mathrm{E}-01$	6.90E-01	7.50E-01	$7.40 \mathrm{E}-01$	8.20E-01	8.70E-01	9.10E-01	$1.10 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	$1.80 \mathrm{E}-01$	3.30E-01	4.90E-01	5.90E-01	7.00E-01	7.40E-01	7.60E-01	7.10E-01	9.30E-01	8.50E-01	8.80E-01	9.20E-01	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	9.50E-01	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	5.90E-01	8.20E-01	8.60E-01	$9.80 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	9.40E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
							Ground	ane, Area	Correction	Factor							
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	10 m ^2	20 m 2	50 m ^2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	8.40E-02	$1.50 \mathrm{E}-01$	2.70E-01	3.90E-01	5.10E-01	$6.50 \mathrm{E}-01$	7.40E-01	8.10E-01	$8.70 \mathrm{E}-01$	9.10E-01	9.30E-01	9.50E-01	9.80E-01	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	$5.20 \mathrm{E}-02$	9.80E-02	1.50E-01	2.10E-01	$2.90 \mathrm{E}-01$	3.70E-01	4.40E-01	$5.40 \mathrm{E}-01$	5.90E-01	6.60E-01	7.40E-01	$8.10 \mathrm{E}-01$	$8.70 \mathrm{E}-01$	9.10E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$														
Pu-238	$1.00 \mathrm{E}-01$	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	$7.80 \mathrm{E}-01$	8.70E-01	9.40E-01	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$							

External Exposure											
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)	Inhalation		
Am-241	M	$1.87 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.38E-08	$2.58 \mathrm{E}-08$	$2.77 \mathrm{E}-08$	1.32E-13	5.81E-11		Form	SF(i)
Co-60	M	2.19E-06	$1.24 \mathrm{E}-05$	2.26E-06	$6.49 \mathrm{E}-06$	$1.04 \mathrm{E}-05$	2.44E-11	$1.13 \mathrm{E}-08$	Am-241	F	$3.77 \mathrm{E}-08$
H-3	V	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Am-241	M	$2.81 \mathrm{E}-08$
H-3	M	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	Am-241	S	$3.54 \mathrm{E}-08$
Pu-238	M	3.68E-10	$6.92 \mathrm{E}-11$	4.81E-11	$6.30 \mathrm{E}-11$	6.87E-11	5.96E-16	2.56E-13	Co-60	F	$1.71 \mathrm{E}-11$
									Co-60	M	$3.59 \mathrm{E}-11$
		Ingestio							Co-60	S	$1.01 \mathrm{E}-10$
	Type	SF(w)	SF(f)	SF(s)	Soil Worker				H-3	F	$1.95 \mathrm{E}-14$
Am-241	M	1.04E-10	1.34E-10	1.84E-10	9.10E-11				H-3	M	$1.99 \mathrm{E}-13$
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	3.81E-11	$7.33 \mathrm{E}-12$				H-3	S	$8.47 \mathrm{E}-13$
H-3	V	5.07E-14	$6.51 \mathrm{E}-14$	8.99E-14	$4.51 \mathrm{E}-14$				H-3	V	$5.62 \mathrm{E}-14$
H-3	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	0.00E+00	0.00E+00				H-3	j(elementa	5.62E-18
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$				H-3	G(organic)	$1.28 \mathrm{E}-13$
									Pu-238	F	5.22E-08
									Pu-238	M	$3.36 \mathrm{E}-08$
									Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}^{\wedge} 2$	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m}^{\wedge} 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	8.40E-02	1.50E-01	2.70E-01	3.90E-01	5.10E-01	6.50E-01	7.40E-01	8.10E-01	8.70E-01	9.10E-01	9.30E-01	9.50E-01	9.80E-01	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	$5.20 \mathrm{E}-02$	9.80E-02	$1.50 \mathrm{E}-01$	2.10E-01	2.90E-01	3.70E-01	4.40E-01	5.40E-01	5.90E-01	6.60E-01	7.40E-01	$8.10 \mathrm{E}-01$	8.70E-01	9.10E-01	9.70E-01	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$														
Pu-238	$1.00 \mathrm{E}-01$	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	7.80E-01	8.70E-01	9.40E-01	9.90E-01	$1.00 \mathrm{E}+00$							

Soil Volume																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}^{\wedge} 2$	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m}^{\wedge} 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	1.90E-01	3.20E-01	4.80E-01	5.50E-01	6.60E-01	6.90E-01	7.50E-01	7.40E-01	8.20E-01	8.70E-01	$9.10 \mathrm{E}-01$	$1.10 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	$1.80 \mathrm{E}-01$	3.30E-01	$4.90 \mathrm{E}-01$	5.90E-01	7.00E-01	7.40E-01	7.60E-01	7.10E-01	9.30E-01	8.50E-01	8.80E-01	9.20E-01	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	5.90E-01	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	9.40E-01	9.70E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

Air						
	With Halflife Decay			Without Halflife Decay		
	Inhalation	External	Total	Inhalation	External	Total
Am-241	\#REF!	\#REF!	$1.00 \mathrm{E}+001$	1.00E-06	1.00E-06	1.00E+00
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
Co-60	\#REF!	\#REF!	$1.00 \mathrm{E}+00$	1.00E-06	1.00E-06	1.00E+00
	\#REF!	\#REF!	\#REF! !	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
H-3	0.00E+00		$1.00 \mathrm{E}+00$	1.00E-06		$1.00 \mathrm{E}+00$
	\#VALUE!		\#VALUE! !	\#VALUE!		\#VALUE!
	\#VALUE!		\#VALUE!	\#VALUE!		ivalue!
Pu-238	\#VALUE!	\#VALUE!	$1.00 \mathrm{E}+00$	1.00E-06	1.00E-06	$1.00 \mathrm{E}+00$
	\#VALUE!	\#VALUE!	\#VALUE! !	$2.01 \mathrm{E}+02$	0.00E+00	\#DIV/0!
	\#VALUE!	\#VALUE!	\#VALUE!	4.99E-09	\#DIV/0!	\#DIV/0!

Air				
		Calculated	PRG	\% Differ.
	lation	16E-04	$2.16 \mathrm{E}-04$	0.0\%
	External	$3.08 \mathrm{E}+03$	$3.08 \mathrm{E}+03$	0.0\%
	Total	2.16E-04	2.16E-04	0.0\%
	Inhealation	2.12E-04	2.12E-04	0.0\%
	External	$3.02 \mathrm{E}+03$	3.02E+03	0.0\%
	Total	2.12E-04	2.12E-04	0.0\%
O	Inhalation	$2.70 \mathrm{E}-01$	2.71E-01	-0.4\%
	External	$5.29 \mathrm{E}+01$	5.32E+01	-0.6\%
	Total	2.69E-01	$2.70 \mathrm{E}-01$	-0.4\%
	Inhalation	7.92E-02	7.95E-02	-0.4\%
	External	$1.55 \mathrm{E}+01$	$1.56 \mathrm{E}+01$	-0.6\%
	Total	7.88E-02	7.91E-02	-0.4\%
포̇	Inhalation	$1.76 \mathrm{E}+01$	1.76E+01	0.0\%
	External			
	Total	1.76E+01	1.76E+01	0.0\%
	Inhalation	$9.45 \mathrm{E}+00$	9.44E+00	0.1\%
	External			
	Total	9.45E+00	9.44E+00	0.1\%
$\begin{gathered} \infty \\ \stackrel{\sim}{2} \\ \vdots \end{gathered}$	Inhalation	1.69E-04	1.69E-04	0.0\%
	External	7.54E+05	7.55E+05	-0.1\%
	Total	1.69E-04	1.69E-04	0.0\%
	Inhalation	1.53E-04	1.53E-04	0.0\%
	External	$6.84 \mathrm{E}+05$	6.85E+05	-0.1\%
	Total	1.53E-04	1.53E-04	0.0\%

Inhalation (without half-life decay)

External (without half-life decay) Total (without half-life decay

Particulate Emission Factor - Wind

"PE" "F"."w" "" (("m"--"air" ^"3")/("k" "g"," "soil"))"=" "Q" /"C"_"wind" " "
 $\left.\mathrm{F}(\mathrm{x})^{10}\right)$

Inhalation of particulates emitted from soil
$\frac{\text { External exposure to ionizing radiation }}{\text { "PRGiv }}$

>)"x GS" "F" _"i" " " ("0.4") "x AC" "F" _"ext-sv" - ل-)
> $\frac{\text { Total }}{\text { "PR" "G }}$
> "PR" "G" "iw-soil-tot" " " ("pCi" /"g")"=" "1" /("1" /("PR" "G" _"iw-soil-ing"))"+" ("1" /("PR" "G"_-iw-soil-inh"))"+" ("1" /("PR" "G" _"iw-soil-ext"))
External (with half-life decay)

> Total (with half-life decay)
> "PR" "G"_"iw-air-tot-decay" " " ("pCi" /"m" ^"3")"=" "1" /("1" /("PR" "G" _"iw-air-inh-decay") "+" "1" /("PR" "G"_"iw-air-sub-decay") " ")
"PR" "G" -"iw-air-inh-nodecay" " " ("pci" /"m" ^"3")"=" + "TR"- /("S" "F"_ "i" " " ("risk" /"pCi")" x E" "F" _"iw" " " ("250 day" /"yr") " x E" "D" _"iw" " "

"PR" "G" "iw-air-sub-nodecay" " " ("pCi" /"m" ^"3")"=" ト"TR"- ل/("S" "F" _"sub" " " (("risk" /'yr")/("pCi" /"m" ^"3"))" x E" "F"_"iw" " " ("250 day" /"yr")" x" (("1 yr" - ل/"365 days")" x E" "D" _"iw" " " ("25 yr")" x E" "T" _"iw" " " ("8 hr" /"day")" x ("1 day" /"24 hrs")" x GS" "F" _"a" " " ("1.0"))
"PR" "G" _"iw-air-tot-nodecay" " " ("pCi" /"m" ^"3")"=" "1" /("1" /("PR" "G"_"iw-air-inh-nodecay") "+" "1" /("PR" "G"_"iw-air-sub-nodecay") " ")

Variables	Defaults		Type	Hallife (y)	λ	1-exp-(-tt(iw))	SF(s)	SF(i)	SF(ext-sv)	ACF(ext-sv)	SF(sub)
TR	1.008-06	Am-241	M	$4.32 \mathrm{E}+02$	1.60E-03	3.93E-02	9.10E-11	. 0 E +00	2.77E-08	$1.00 E+00$	5.81E-11
t(ow)	25	Co-60	M	$5.27 \mathrm{E}+00$	1.315-01	$9.63 \mathrm{E}-01$	7.33E-12	$1.00 E+00$	1.24E-05	$1.00 E+00$	1.13E-08
EFFow)	225	H-3	M	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	7.55E-01	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	9.00E-01	0.00E+00
ED(ow)	25	Pu-238	M	8.77E+01	7.90E-03	1.79E-01	1.17E-10	$1.00 \mathrm{E}+00$	6.92E-11	1.00E+00	2.56E-13

IRS(ow)	100
ET(ow)	8
$\operatorname{IRA}($ ow $)$	60
PEF	$1.36 E+09$
GSF(o)	1
GSF(a)	1
Q/C(wind)	93.77358
V	0.5
$\mathrm{U}(\mathrm{m})$	4.69
$\mathrm{U}(\mathrm{t})$	11.32
$\mathrm{~F}(\mathrm{x})$	0.194
A	16.2302
$\mathrm{~A}(\mathrm{~s})$	0.5
B	18.7762
C	216.108

Soil				
	Ingestion	Inhalation	External	Total
Am-241	4.011-08	4.011-08	4.01E-08	$1.00 \mathrm{E}+00$
	2.01E-09	$0.00 \mathrm{E}+00$	5.59E-09	\#DIV/0!
	$1.99 \mathrm{E}+01$	\#DIV/0!	7.17E+00	\#DIV/0!
co-60	3.29E-06	3.29E-06	3.29E-06	$1.00 \mathrm{E}+00$
	3.97E-09	7.97E-02	6.13E-05	$2.43 \mathrm{E}+04$
	$8.28 \mathrm{E}+02$	4.13E-05	5.36E-02	4.12E-05
H-3		1.41E-06		1.00E+00
		$0.00 \mathrm{E}+00$		\#DIV/0!
		\#DIV/0!		\#DIV/0!
Pu-238	$1.98 \mathrm{E}-07$	$1.98 \mathrm{E}-07$	1.98E-07	$1.00 \mathrm{E}+00$
	1.18E-08	1.48E-02	6.37E-11	$7.51 \mathrm{E}+04$
	1.67E+01	$1.33 \mathrm{E}-05$	3.10E+03	1.33E-05

Air						
	With Halflife Decay			Without Halflife Decay		
	Inhalation	External	Total	Inhalation	External	Total
Am-241	\#REF!	\#REF!	$1.00 \mathrm{E}+00$	1.00E-06	1.00E-06	1.00E+00
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
Co-60	\#REF!	\#REF!	$1.00 \mathrm{E}+00^{\prime}$	1.00E-06	1.00E-06	$1.00 \mathrm{E}+00$
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!	\#REF!
H-3	\#REF!		1.00E+00	1.00E-06		$1.00 \mathrm{E}+00$
	\#REF!		\#REF!	\#REF!		\#REF!
	\#REF!		\#REFI	\#REF!		\#REF!
Pu-238	0.00E+00	0.00E+00	1.00E+001	1.00E-06	1.00E-06	$1.00 \mathrm{E}+00$
	\#VaLUE!	\#VALUE!	\#VaLUE!	\#VALUE!	\#VALUE!	\#VALUE!
	\#VALUE!	\#VALUE!	AVALUE!	\#VALUE!	\#VALUE!	fVALUE!

Air				
		Calculated	PRG	\% Differ.
$\begin{gathered} \underset{\sim}{\underset{~}{c}} \\ \end{gathered}$	Inhalation	2.41 E-04	2.40E-04	0.4\%
	External	3.42E+03	$3.42 \mathrm{E}+03$	0.0\%
	Total	$2.41 \mathrm{E}-04$	2.40E-04	.4\%
	Inhalation	2.36E-04	2.36E-04	0.0
	External	3.35E+03	3.35E+03	0.0%
	Total	2.36E-04	2.36E-04	0.0\%
$\begin{aligned} & \circ \\ & \hline \text { © } \end{aligned}$	Inhalation	3.01E-01	3.02E-01	-0.3\%
	External	$5.88 \mathrm{E}+01$	$5.91 \mathrm{E}+01$	-0.5\%
	Total	2.99E-01	3.00E-01	-0.3\%
	Inhalation	8.80E-02	8.83E-02	-0.3\%
	External	$1.72 \mathrm{E}+01$	1.73E+01	-0.6\%
	Total	8.76E-02	8.79E-02	-0.3\%
T	Inhalation	1.96E+01	1.95E+01	0.5\%
	External			
	Total	1.96E+01	$1.95 E+01$	0.5\%
	Inhalation	$1.05 \mathrm{E}+01$	$1.05 \mathrm{E}+01$	0.0%
	External			
	Total	$1.05 \mathrm{E}+01$	$1.05 \mathrm{E}+01$	0.0\%
$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \vdots \end{gathered}$	Inhalation	1.88E-04	1.88E-04	0.0\%
	External	$8.38 \mathrm{E}+05$	8.39E+05	0.1\%
	Total	1.88E-04	1.88E-04	0.0\%
	Inhalation	1.70E-04	1.70E-04	0.0\%
	External	7.60E+05	7.61 +05	-0.1\%
	Total	1.70E-04	1.70E-04	0.0\%

[^0]| Variables | Defauts | | Type | Hallife（y） | λ | 1－exp（－Xt（cw） | SF（ext－sv） | SF（ext－1cm） | SFFext－5m） | Sflext－15cm） | SF（ext－gp） | GSF（0）＠0cm | | | | | | | | |
| :---: |
| TR | 1．00E－06 | Am－241 | M | 4．32E＋02 | 1．60E－03 | 3．93E－02 | 2．77E－08 | 1．38E－08 | 2．58E－08 | 2．77E－08 | 1．87E－08 | 4．00E－01 | | | | | | | | |
| t（iw） | 25 | Co－60 | M | 5．27E＋00 | 1．31E－01 | $9.63 \mathrm{E}-01$ | 1．24E－05 | 2．26E－06 | 6．49E－06 | 1．04E－05 | 2．19E－06 | 4．00E－01 | | | | | | | | |
| EFf（iw） | 250 | H－3 | M | $1.23 \mathrm{E}+01$ | 5．63E－02 | 7．55E－01 | 0．00E＋ 00 | 0．00E＋00 | $0.00 \mathrm{E}+00$ | 0．00E＋00 | $0.00 \mathrm{E}+00$ | 4．00E－01 | | | | | | | | |
| ED（iw） | 25 | Pu－238 | M | 8．77E＋01 | 7．90E－03 | 1．79E－01 | 6．92E－11 | 4．81E－11 | 6．30E－11 | 6．87E－11 | 3．68E－10 | 4．00E－01 | | | | | | | | |
| ET（iw） | 8 | | | | | | | | | | | | | | | | | | | |
| | | | ACF（ext－sv） | ACFFext－1cm） | ACFlext－5cm） | ACFfext－15cm） | ACFlext－gp） | | | ACFIextsv） | ACF（ext－1cm） | ACFlext－5cm） | ACF（ext－15cm） | ACF（ext－go） | | ACF（ext－sv） | ACFlext－1cm） | ACFlext－5cm） | ACF（ext－15cm） | ACF（ext－gp） |
| | | Am－241 | 1．08E－01 | 9．46E－02 | 9．50E－02 | 9.69 E | 8．44E－02 | | Am－241 | 1．944－01 | 1．67－－01 | 1．67E－01 | 1．64－－01 | 1．50E－01 | Am－241 | 3．20E－01 | 7e－01 | E－01 | 2.85 | 2．71E－01 |
| | | Co－60 | 9．83E－02 | 4．26E－02 | 6．55E－02 | 8．49E－02 | 2．83E－02 | | Co－60 | 1．77E－01 | 7．98E－02 | 1．22E－01 | 1．59E－01 | 5．21E－02 | Co－60 | 3．33E－01 | 1．48E－01 | 2．22E－01 | $2.88 \mathrm{E}-01$ | 9．86E－02 |
| | | H－3 | $9.00 \mathrm{E}-01$ | $9.00 \mathrm{E}-01$ | $9.00 \mathrm{E}-01$ | 9．00E－01 | $9.00 \mathrm{E}-01$ | | H－3 | $9.00 \mathrm{E}-01$ | $9.00 \mathrm{E}-01$ | 9．00E－01 | 9．00E－01 | $9.00 \mathrm{E}-01$ | H－3 | $9.00 \mathrm{E}-01$ | 9．00E－01 | 9．00E－01 | $9.00 \mathrm{E}-01$ | 9．00E－01 |
| | | Pu－238 | 1．79E－01 | 1．53E－01 | 1．60E－01 | 1．71E－01 | 1．03E－01 | | Pu－238 | 2．84－01 | $2.70 \mathrm{E}-01$ | 2．83E－01 | $2.83 \mathrm{E}-01$ | 1．84E－01 | Pu－238 | 5．92E－01 | 4．72E－01 | 5．02E－01 | 5．18E－01 | 3．31E－01 |
| | | | Cover Layer Thickness＝0cm ； | | | Area $=1 \mathrm{~m}^{2}$ | | | | Cover Layer Thickness＝0cm ；Area $=2 \mathrm{~m}^{2}$ | | | | | | Cover Layer Thickness＝0cm ；Area $=5 \mathrm{~m}^{2}$ | | | | |
| | | | Infinite Depth | 1 cm | 5 cm | 15 cm | Dust | | | Infinite Depth | 1 cm | 5 cm | 15 cm | Dust | | Infinite Depth | 1 cm | 5 cm | 15 cm | Dust |
| | | Am－241 | 4．01E－08 | 4．01E－08 | 4．01E－08 | 4．01E－08 | 4．01E－08 | | Am－241 | 4．01E－08 | 4．01E－08 | 4．01E－08 | 4．01E－08 | 4．01E－08 | Am－241 | $4.01 \mathrm{E}-08$ | 4．011－08 | 4．011－08 | 4．011－08 | 4．011－08 |
| | | | 2．68E－10 | 1．17E－10 | 2．20E－10 | 2．41E－10 | 1．42E－10 | | | 4．82E－10 | 2．07E－10 | 3．87E－10 | 4．08E－10 | 2．52E－10 | | 7．96E－10 | 3．68－－10 | 6．72E－10 | 7．09E－10 | 4．55－－10 |
| | | | 1．49E＋02 | 3．42E＋02 | 1．82E＋02 | $1.66 \mathrm{E}+02$ | 2．83E＋02 | | | 8．32E＋01 | $1.94 \mathrm{E}+02$ | 1．04E＋02 | $9.84 \mathrm{E}+01$ | 1．59E＋02 | | 5．04E＋01 | $1.09 \mathrm{E}+02$ | 5．97E＋01 | $5.66 \mathrm{E}+01$ | 8．82E＋01 |
| | | co－60 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 | | co－60 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 | Co－60 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 | 3．29E－06 |
| | | | 2.68 E－06 | 2．12E－07 | 9．34E－07 | 1．94E－06 | 1．36E－07 | | | 4．82E－06 | 3．96E－07 | 1．74E－06 | 3．63E－06 | 2．51E－07 | | $9.08 \mathrm{E}-06$ | 7．35E－07 | 3．17E－06 | 6．58E－06 | 4．75E－07 |
| | | | 1．23E＋00 | 1．55E＋01 | 3．52E＋00 | 1．69E＋00 | $2.41 E+01$ | | | 6．82E－01 | 8．29E＋00 | 1．89E＋00 | 9．05E－01 | 1．31E＋01 | | 3．62E－01 | $4.47 \mathrm{E}+00$ | 1．04E＋00 | 4．99E－01 | 6．93E＋00 |
| | | H－3 | | | | | | | H－3 | | | | | | H－3 | | | | | |
| | | Pu－238 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 | | Pu－238 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 | Pu－238 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 | 1．98E－07 |
| | | | 5．07E－12 | $3.01 \mathrm{E}-12$ | 4．13E－12 | 4．81E－12 | 1．55E－11 | | | 8．04E－12 | 5．32E－12 | 7．30E－12 | 7．96E－12 | 2．77E－11 | | 1．68E－11 | 9．29E－12 | 1．29E－11 | 1．46E－11 | 4．99E－11 |
| | | | 3．90E＋04 | 6．56E＋04 | 4．79E＋04 | 4．11E＋04 | 1．27E＋04 | | | $2.46 \mathrm{E}+04$ | 3．72E＋04 | 2．71E＋04 | $2.48 \mathrm{E}+04$ | 7．13E＋03 | | 1．18E＋04 | 2．13E＋04 | $1.53 \mathrm{E}+04$ | $1.36 \mathrm{E}+04$ | $3.96 E+03$ |
| | | | | Calculated | PRG | \％Differ． | | | | | Calculated | PRG | \％Differ． | | | | Calculated | PRG | \％Differ． | |
| | | | Infinite Depth | $1.49 \mathrm{E}+02$ | $1.50 \mathrm{E}+02$ | －0．7\％ | | | | Infinite Depth | $8.32 \mathrm{E}+01$ | 8．32E＋01 | 0．0\％ | | $\begin{gathered} \underset{\sim}{\tau} \\ \underset{\substack{c}}{ } \end{gathered}$ | Infinite Depth | $5.04 E+01$ | $5.05 \mathrm{E}+01$ | ${ }^{0.2 \%}$ | |
| | | | 1 cm | $3.42 \mathrm{E}+02$ | $3.44 \mathrm{E}+02$ | －0．6\％ | | | | 1 cm | $1.94 E+02$ | $1.94 \mathrm{E}+02$ | 0．0\％ | | | 1 cm | $1.09 \mathrm{E}+02$ | 1．09E＋02 | 0．0\％ | |
| | | | 5 cm | $1.82 \mathrm{E}+02$ | $1.82 \mathrm{E}+02$ | 0．0\％ | | | | 5 cm | $1.045+02$ | $1.04 \mathrm{E}+02$ | 0．0\％ | | | 5 cm | $5.97 \mathrm{E}+01$ | $5.99 \mathrm{E}+01$ | 0．3\％ | |
| | | | 15 cm | $1.66 \mathrm{E}+02$ | $1.67 \mathrm{E}+02$ | －0．6\％ | | | | 15 cm | 9．84E＋01 | $9.85 \mathrm{E}+01$ | 0．1\％ | | | 15 cm | $5.66 \mathrm{E}+01$ | $5.67 \mathrm{E}+01$ | －0．2\％ | |
| | | | Dust | $2.83 E+02$ | $2.83 E+02$ | 0．0\％ | | | | Dust | $1.599+02$ | 1．59E＋02 | 0．0\％ | | | Dust | 8．822＋01 | 8．83E＋01 | 0．1\％ | |
| | | $$ | Infinite Depth | 1．23E＋00 | $1.23 \mathrm{E}+00$ | 0．0\％ | | | $\begin{aligned} & \circ \\ & \text { © } \end{aligned}$ | Infinite Depth | 6．82E－01 | 6．83E－01 | 0．1\％ | | $\begin{aligned} & \text { ọ } \end{aligned}$ | Infinite Depth | 3．62E－01 | 3．62E－01 | 0．0\％ | |
| | | | 1 cm | $1.55 \mathrm{E}+01$ | $1.55 \mathrm{E}+01$ | 0．0\％ | | | | 1 cm | 8．29E＋00 | 8．29E＋00 | 0．0\％ | | | 1 cm | 4．47E＋00 | $4.48 \mathrm{E}+00$ | 0．2\％ | |
| | | | 5 cm | 3．52E＋00 | 3．52E＋00 | 0．0\％ | | | | 5 cm | $1.89 \mathrm{E}+00$ | $1.89 \mathrm{E}+00$ | 0．0\％ | | | 5 cm | $1.04 \mathrm{E}+00$ | 1．04E＋00 | 0．0\％ | |
| | | | 15 cm | 1．69E＋00 | 1．69E＋00 | 0．0\％ | | | | 15 cm | 9．05E－01 | $9.045-01$ | 0．1\％ | | | 15 cm | 4．99E－01 | 4．98E－01 | 0．2\％ | |
| | | | Dust | $2.41 \mathrm{E}+01$ | $2.42 \mathrm{E}+01$ | 0．4\％ | | | | Dust | 1．31E＋01 | 1．31E＋01 | 0．0\％ | | | Dust | 6．93E＋00 | 6．95E＋00 | 0．3\％ | |
| | | 꼬̇ | Infinite Depth | | | | | | T | Infinite Depth | | | | | 포 | Infinite Depth | | | | |
| | | | 1 cm | | | | | | | 1 cm | | | | | | 1 cm | | | | |
| | | | 5 cm | | | | | | | 5 cm | | | | | | 5 cm | | | | |
| | | | 15 cm | | | | | | | 15 cm | | | | | | 15 cm | | | | |
| | | | Dust | | | | | | | Dust | | | | | | Dust | | | | |
| | | $\begin{gathered} \infty \\ \underset{N}{\grave{2}} \end{gathered}$ | Infinite Depth | 3．90E＋04 | $3.91 \mathrm{~F}+04$ | －0．3\％ | | | $\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{2}{2} \end{gathered}$ | Infinite Depth | $2.46 \mathrm{E}+04$ | $2.46 E+04$ | 0．0\％ | | $\stackrel{\sim}{\stackrel{\infty}{2}}$ | Infinite Depth | 1．18E＋04 | 1．18E＋04 | 0．0\％ | |
| | | | 1 cm | $6.56 \mathrm{E}+04$ | $6.55 \mathrm{E}+04$ | 0．2\％ | | | | 1 cm | $3.72 \mathrm{E}+04$ | $3.73 \mathrm{E}+04$ | －0．3\％ | | | 1 cm | $2.13 \mathrm{E}+04$ | $2.13 \mathrm{E}+04$ | 0．0\％ | |
| | | | 5 cm | 4．79E＋04 | $4.80 \mathrm{E}+04$ | －0．2\％ | | | | 5 cm | 2.71 E＋04 | $2.71 E+04$ | 0．0\％ | | | 5 cm | $1.53 \mathrm{E}+04$ | $1.53 \mathrm{E}+04$ | 0．0\％ | |
| | | | 15 cm | 4．11E＋04 | 4．12E＋04 | －0．2\％ | | | | 15 cm | $2.48 \mathrm{E}+04$ | $2.49 \mathrm{E}+04$ | 0．4\％ | | | 15 cm | $1.36 \mathrm{E}+04$ | $1.36 E+04$ | 0．0\％ | |
| | | | Dust | 1．27E＋04 | $1.27 \mathrm{E}+04$ | 0．0\％ | | | | Dust | $7.13 \mathrm{E}+03$ | $7.13 \mathrm{E}+03$ | 0．0\％ | | | Dust | $3.96 \mathrm{E}+03$ | $3.96 \mathrm{E}+03$ | 0．0\％ | |
| Direct External Exposure to contamination at infinite depth | |
| ）＂x＂ト ト＂E＂＂T＂＿＂iw＂＂＂（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hr＂）＂x GS＂＂F＂＿＂i＂＂＂（＂0．4＂）＂x AC＂＂F＂＿＂ext－sv＂† f ） | |
| |
| |
| ）＂x トトト＂E＂＂T＂＿＂iw＂＂＂（（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂24 hr＂）＂x GS＂＂F＂＿＂i＂＂＂（＂0．4＂）＂x AC＂＂F＂＿＂ext－1cm＂－ | |
| Direct External Exposure to contamination at 5cm | |
| ）＂x＂トト＂E＂＂T＂＿＂iw＂＂＂（＂8 hrs＂／＂day＂）＂x（＂1 day＂／＂24 hr＂）＂x GS＂＂F＂＿＂i＂＂＂（＂0．4＂）＂x AC＂＂F＂＿＂ext－5cm＂－才 ） | |
| |
| |
| yr＂）＂x＂トト＂E＂＂T＂＿＂iw＂＂＂（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hr＂）＂x GS＂＂F＂＿＂i＂＂＂（＂0．4＂）＂x AC＂＂F＂＿＂ext－15cm＂† ）
 Direct External Exposure to contamination dust | |
| トト＂E＂＂T＂＿＂iw＂＂＂（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂24 hr＂）＂x GS＂＂F＂＿＂i＂＂＂（＂0．4＂）＂xAC＂＂F＂＿＂ext－gp＂－H ） | |

Variables	Defauts		Type	Hallife（y）	λ	1－exp（－Xt（cw）	SF（ext－sv）	SFlext－1cm）	SFFext－5m）	SFlext－15cm）	SF（ext－gp）	6SF（0）＠ocm								
TR	1．00E－06	Am－241	M	4．32E＋02	1．60E－03	3．93E－02	2．77E－08	1．38E－08	2．58E－08	2．77E－08	1．87－－08	1．00E＋00								
tow）	25	Co－60	M	5．27E＋00	1．318－01	$9.63 \mathrm{E}-01$	1．24E－05	2．26E－06	6．49E－06	1．04E－05	2．19E－06	$1.00 \mathrm{E}+00$								
EFF（ow）	225	H－3	M	1．23E＋01	5．63E－02	7．55E－01	0．00E＋00	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0．00E＋ 00	0．00E＋00	$1.00 \mathrm{E}+00$								
ED（ow）	25	Pu－238	M	8．77E＋01	7．90E－03	1．79E－01	6．92E－11	4．81E－11	6．30E－11	$6.87 \mathrm{E}-11$	3．68E－10	1．00E＋00								
ETT（ow）	8																			
			ACflext－sv）	ACFlext－1cm）	ACFFext－5m）	ACF（ext－15cm）	ACFext－gp）			ACFIext－sv）	ACF（ext－1cm）	ACFlext－5cm）	ACF（ext－15cm）	ACFlext－gp）		ACFlext－sv）	ACFlext－1cm）	ACFlext－5m）	ACF（ext－15cm）	ACF（ext－gp）
		Am－241	1．08E－01	9．46E－02	9．50E－02	9．69E－02	8．44E－02		Am－241	1．944－01	1．67E－01	1．67E－01	1．64E－01	1．50E－01	Am－241	3．20E－01	2．97E－01	2．90E－01	2．85E－01	2．71e－01
		Co－60	9．83E－02	4．26E－02	6．55E－02	8．49E－02	2．83E－02		Co－60	1．77E－01	7．98E－02	1．22E－01	1．59E－01	5．21E－02	C0－60	3．33E－01	1．48E－01	2．22E－01	2．88E－01	$9.86 \mathrm{E}-02$
		H－3	$9.00 \mathrm{E}-01$	9．00E－01	$9.00 \mathrm{E}-01$	$9.00 \mathrm{E}-01$	9．00E－01		H－3	$9.00 \mathrm{E}-01$	9．00E－01	9．00E－01	$9.00 \mathrm{E}-01$	$9.00 \mathrm{E}-01$	H－3	$9.00 \mathrm{E}-01$	9．00E－01	$9.00 \mathrm{E}-01$	$9.00 \mathrm{E}-01$	9．00E－01
		Pu－238	1．79E－01	1．53E－01	1．60E－01	1．71E－01	1．03E－01		Pu－238	2．84E－01	2．70E－01	2．83E－01	$2.83 \mathrm{E}-01$	1．84E－01	Pu－238	5．92E－01	4．72e－01	5．02E－01	5．18E－01	3．311－01
				Cover Layer Th	hickness $=0 \mathrm{~cm}$ ；	；Area $=1 \mathrm{~m}^{2}$					Cover Layer Thi	hickness $=0 \mathrm{~cm}$ ；	； Area $=2 \mathrm{~m}^{2}$				Cover Layer Thic	ickness $=0 \mathrm{~cm}$	；Area $=5 \mathrm{~m}^{2}$	
			Infinite Depth	1 cm	5 cm	15 cm	Dust			Infinite Depth	1 cm	5 cm	15 cm	Dust		Infinite Depth	1 cm	5 cm	15 cm	Dust
			4．01E－08	4．01E－08	4．01E－08	4．01E－08	4．01E－08			4．01E－08	4．01E－08	4．01E－08	4．011－08	4．01E－08		4．01E－08	4．01E－08	4．011－08	4．011－08	4．011－08
		Am－241	6．04E－10	2．64E－10	4．95E－10	5．42E－10	3．19E－10		Am－241	1．09E－09	4．65－－10	8．70E－10	$9.17 \mathrm{E}-10$	5．66E－10	Am－241	1．79E－09	8．28E－10	1．512－09	1．59E－09	1．02E－09
			$6.64 \mathrm{E}+01$	1．52E＋02	$8.10 \mathrm{E}+01$	$7.40 \mathrm{E}+01$	1．26E＋02			3．70E＋01	8．62E＋01	4．61E＋01	$4.37 \mathrm{E}+01$	7．08E＋01		$2.24 \mathrm{E}+01$	4．85E＋01	$2.65 \mathrm{E}+01$	$2.52 \mathrm{E}+01$	$3.92 \mathrm{~F}+01$
			3．29E－06	3．29E－06	3．29E－06	3．29E－06	3．29E－06			3．29E－06	3．29E－06	3．29E－06	3．29E－06	3．29E－06		3．29E－06	3．29E－06	3．29E－06	3．29E－06	3．29E－06
		Co－60	6．03E－06	4．76E－07	2．10E－06	4．37E－06	3．06E－07		co－60	1．09E－05	8．92E－07	3．92E－06	8．18E－06	5．64E－07	co－60	2．04E－05	1．65－06	7．12E－06	1．48E－05	1．07e－06
			5．45E－01	6．91E＋00	1．56E＋00	7．53E－01	1．07E＋01			3．03E－01	3．69E＋00	8．40E－01	4．02E－01	5．83E＋00		1．61E－01	1．99E＋00	4．61E－01	2．22E－01	3．08E＋00
		H－3							H－3						H－3					
			1．98E－07	1．98E－07	1．98E－07	1．98E－07	1．98E－07			1．98E－07	1．98E－07	1．98E－07	1．98E－07	1．98E－07		1．98E－07	1．98E－07	1．98E－07	1．98E－07	1．98E－07
		Pu－238	1．14E－11	6．78E－12	9．28E－12	1．08E－11	3．49E－11		Pu－238	1．81E－11	1．20E－11	1．64E－11	1．79E－11	6．24－11	Pu－238	3．77E－11	2．09E－11	2．91E－11	3．28E－11	1．12E－10
			$1.73 \mathrm{E}+04$	$2.92 \mathrm{E}+04$	$2.13 \mathrm{E}+04$	1．83E＋04	5．66E＋03			1．09E＋04	1.655 E＋04	1．20E＋04	$1.10 \mathrm{E}+04$	3．17E＋03		5．24E＋03	$9.45 \mathrm{E}+03$	6．78E＋03	$6.03 \mathrm{E}+03$	1．76E＋03
				Calculated	PRG	\％Differ．					Calculated	PRG	\％Differ．				Calculated	PRG	\％Differ．	
			Infinite Depth	$6.64 \mathrm{E}+01$	$6.66 \mathrm{E}+01$	－0．3\％				Infinite Depth	3．70E＋01	$3.70 E+01$	0．0\％			Infinite Depth	2．24E＋01	$2.25 \mathrm{E}+01$	${ }^{-0.4 \%}$	
			1 cm	1．52E＋02	$1.53 \mathrm{E}+02$	－0．7\％				1 cm	8．62E＋01	8．64E＋01	－0．2\％			1 cm	$4.85 \mathrm{E}+01$	$4.86 \mathrm{E}+01$	－0．2\％	
		Ñ	5 cm	8．10E＋01	8．11E＋01	－0．1\％			$\underset{\substack{~ T}}{ }$	5 cm	4.61 E＋01	4．62E＋01	－0．2\％		$\underset{\substack{~}}{\substack{2}}$	5 cm	$2.65 \mathrm{E}+01$	$2.66 \mathrm{E}+01$	－0．4\％	
			15 cm	7．40E＋01	$7.40 \mathrm{E}+01$	0．0\％				15 cm	$4.37 \mathrm{E}+01$	$4.38 \mathrm{E}+01$	－0．2\％			15 cm	$2.52 \mathrm{E}+01$	$2.52 \mathrm{E}+01$	0．0\％	
			Dust	1．26E＋02	$1.266+02$	0．0\％				Dust	$7.08 \mathrm{E}+01$	7．07E＋01	0．1\％			Dust	$3.92 \mathrm{E}+01$	3．92E＋01	0．0\％	
			Infinite Depth	5．45E－01	5．46E－01	－0．2\％				Infinite Depth	3．03E－01	3．04E－01	－0．3\％			Infinite Depth	1．61E－01	1．61E－01	0．0\％	
			1 cm	6．91E＋00	$6.90 \mathrm{E}+00$	0．1\％				1 cm	$3.69 E+00$	3．69E＋00	0．0\％			1 cm	$1.99 \mathrm{E}+00$	$1.99 E+00$	0．0\％	
		¢	5 cm	$1.56 \mathrm{E}+00$	$1.566+00$	0．0\％			¢	5 cm	8．40E－01	8．42E－01	0．2\％		¢	5 cm	4．61－－01	4．62E－01	－0．2\％	
			15 cm	7．53E－01	7．52E－01	0．1\％				15 cm	4．02E－01	4．02E－01	0．0\％			15 cm	2．22E－01	2．21E－01	0．5\％	
			Dust	1．07E＋01	$1.07 \mathrm{E}+01$	0．0\％				Dust	5．83E＋00	$5.84 \mathrm{E}+00$	－0．2\％			Dust	3．08E＋00	$3.09 E+00$	－0．3\％	
			Infinite Depth							Infinite Depth						Infinite Depth				
			1 cm							1 cm						1 cm				
		T	5 cm						T	5 cm					T	5 cm				
			15 cm							15 cm						15 cm				
			Dust							Dust						Dust				
			Infinite Depth	$1.73 \mathrm{~F}+04$	1．74E＋04	－0．6\％				Infinite Depth	1．09E＋04	1．09E＋04	0．0\％			Infinite Depth	5．24E＋03	5．24E＋03	0．0\％	
			1 cm	$2.92 \mathrm{E}+04$	2.91 ＋+04	0．3\％				1 cm	$1.65 \mathrm{E}+04$	$1.66 \mathrm{E}+04$	－0．6\％			1 cm	$9.45 \mathrm{E}+03$	$9.47 \mathrm{E}+03$	－0．2\％	
		$\stackrel{\text { N}}{\stackrel{1}{3}}$	5 cm	$2.13 \mathrm{E}+04$	$2.13 \mathrm{E}+04$	0．0\％			$\stackrel{\text { N／}}{\sim}$	5 cm	1．20E＋04	1．20E＋04	0．0\％		$\stackrel{\text { ¢ }}{\substack{~}}$	5 cm	$6.78 \mathrm{E}+03$	$6.78 \mathrm{E}+03$	0．0\％	
			15 cm	$1.83 \mathrm{E}+04$	$1.83 \mathrm{E}+04$	0．0\％				15 cm	$1.10 \mathrm{E}+04$	$1.10 \mathrm{E}+04$	0．0\％			15 cm	$6.03 \mathrm{E}+03$	$6.04 \mathrm{E}+33$	－0．2\％	
			Dust	5．66E＋03	5．65E＋03	0．2\％				Dust	$3.17 \mathrm{E}+03$	$3.17 \mathrm{E}+03$	0．0\％			Dust	$1.766+03$	$1.76 E+03$	0．0\％	
Direct External Exposure to contamination at infinite depth																				
yr＂）＂x＂ト ト＂E＂＂T＂＿＂ow＂＂＂（＂8 hrs＂／＂day＂）＂x＂（＂1 day＂／＂24 hr＂）＂x GS＂＂F＂＿＂o＂＂＂（＂1．0＂）＂x AC＂＂F＂＿＂ext－1cm＂－才 ）																				
Direct External Exposure to contamination dust																				
Direct External Exposure to contamination dust 																				

External Exposure									Inhalation		
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)		Form	SF(i)
Am-241	M	1.87E-08	$2.77 \mathrm{E}-08$	$1.38 \mathrm{E}-08$	$2.58 \mathrm{E}-08$	2.77E-08	1.32E-13	5.81E-11	Am-241	F	$3.77 \mathrm{E}-08$
Co-60	M	$2.19 \mathrm{E}-06$	$1.24 \mathrm{E}-05$	2.26E-06	6.49E-06	1.04E-05	$2.44 \mathrm{E}-11$	1.13E-08	Am-241	M	$2.81 \mathrm{E}-08$
H-3	V	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	Am-241	S	$3.54 \mathrm{E}-08$
H-3	M	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	Co-60	F	$1.71 \mathrm{E}-11$
Pu-238	M	3.68E-10	$6.92 \mathrm{E}-11$	4.81E-11	$6.30 \mathrm{E}-11$	6.87E-11	5.96E-16	2.56E-13	Co-60	M	$3.59 \mathrm{E}-11$
									Co-60	S	$1.01 \mathrm{E}-10$
		Ingestio							H-3	F	$1.95 \mathrm{E}-14$
	Type	SF(w)	SF(f)	SF(s)	Soil Worker				H-3	M	1.99E-13
Am-241	M	1.04E-10	$1.34 \mathrm{E}-10$	1.84E-10	9.10E-11				H-3	S	$8.47 \mathrm{E}-13$
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	3.81E-11	$7.33 \mathrm{E}-12$				H-3	V	5.62E-14
H-3	V	5.07E-14	$6.51 \mathrm{E}-14$	8.99E-14	$4.51 \mathrm{E}-14$				H-3	j(elementa	5.62E-18
H-3	M	1.12E-13	$1.44 \mathrm{E}-13$	0.00E+00	$0.00 \mathrm{E}+00$				H-3	G(organic)	1.28E-13
Pu-238	M	1.31E-10	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	1.17E-10				Pu-238	F	$5.22 \mathrm{E}-08$
									Pu-238	M	$3.36 \mathrm{E}-08$
									Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}{ }^{\wedge}$	$20 \mathrm{~m}^{\wedge} 2$	50 m ^2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	8.40E-02	$1.50 \mathrm{E}-01$	2.70E-01	3.90E-01	5.10E-01	6.50E-01	7.40E-01	8.10E-01	8.70E-01	9.10E-01	$9.30 \mathrm{E}-01$	9.50E-01	$9.80 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	$5.20 \mathrm{E}-02$	9.80E-02	1.50E-01	2.10E-01	2.90E-01	3.70E-01	4.40E-01	5.40E-01	5.90E-01	6.60E-01	7.40E-01	$8.10 \mathrm{E}-01$	8.70E-01	9.10E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.00 \mathrm{E}-01$	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	7.80E-01	8.70E-01	9.40E-01	9.90E-01	$1.00 \mathrm{E}+00$							
Soil Volume																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m}{ }^{2}$	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m}^{\wedge} 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	$1.90 \mathrm{E}-01$	3.20E-01	4.80E-01	5.50E-01	6.60E-01	6.90E-01	7.50E-01	7.40E-01	8.20E-01	$8.70 \mathrm{E}-01$	9.10E-01	1.10E+00	$9.50 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	$1.80 \mathrm{E}-01$	$3.30 \mathrm{E}-01$	4.90E-01	5.90E-01	7.00E-01	7.40E-01	7.60E-01	7.10E-01	9.30E-01	8.50E-01	8.80E-01	$9.20 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$														
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	5.90E-01	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	9.40E-01	9.70E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$9.90 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

[^1]| Variables | Defaults | | Type | Halfife (y) | λ | 1-exp(-̇t(cw)) | SF(f) | TF(fowl) | TF(game) | Bv(dry) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TR | 1.00E-06 | Am-241 | M | $4.32 \mathrm{E}+02$ | 1.60E-03 | $3.00 \mathrm{E}-02$ | 1.34E-10 | $6.00 \mathrm{E}-03$ | 5.00E-04 | 2.20E-05 |
| t(rec) | 19 | Co-60 | M | $5.27 \mathrm{E}+00$ | $1.31 \mathrm{E}-01$ | $9.18 \mathrm{E}-01$ | $2.23 \mathrm{E}-11$ | $9.70 \mathrm{E}-01$ | 4.30E-04 | 8.50E-03 |
| EF(rec) | 250 | H-3 | M | $1.23 \mathrm{E}+01$ | $5.63 \mathrm{E}-02$ | $6.57 \mathrm{E}-01$ | $1.44 \mathrm{E}-13$ | - | $1.20 \mathrm{E}-02$ | $2.40 \mathrm{E}+01$ |
| ED(rec) | 19 | Pu-238 | M | 8.77E+01 | 7.90E-03 | $1.39 \mathrm{E}-01$ | 1.69E-10 | 3.00E-03 | 1.10E-06 | $9.50 \mathrm{E}-06$ |

		$B C=$ Back-Calculated					1.60	-	$1.0{ }^{\text {a }}$			
IRGL(rec)	60											
Q(p-fowl)	0.4											
$\mathrm{f}(\mathrm{p}$-fowl)	3			Consumption of Fowl						Consumption of Land Game		
f(s-fowl)	2			Direct	BC to Soil	BC to Water				Direct	BC to Soil	BC to Water
R(upp)	Bv(dry)		Am-241	1.00E-06	3.93E-02	3.93E-02		Am-241	1.00E-06	$2.62 \mathrm{E}-02$	2.62E-02	
R(es)	MLF			$2.55 \mathrm{E}-05$	4.57E-03	1.20E-05			3.82E-05	5.63E-02	2.75E-05	
Q(s-fowl)	0.054			3.93E-02	$8.72 \mathrm{E}+00$	$3.27 \mathrm{E}+03$			$2.62 \mathrm{E}-02$	4.72E-01	$9.52 \mathrm{E}+02$	
MLF	0.25		Co-60	$1.00 \mathrm{E}-06$	$2.36 \mathrm{E}-01$	$2.36 \mathrm{E}-01$		Co-60	$1.00 \mathrm{E}-06$	$1.57 \mathrm{E}-01$	$1.57 \mathrm{E}-01$	
Q(w-fowl)	2			$4.24 \mathrm{E}-06$	$7.59 \mathrm{E}-01$	$1.94 \mathrm{E}-03$			$6.36 \mathrm{E}-06$	5.00E-02	$2.37 \mathrm{E}-05$	
IRGF(rec)	40			2.36E-01	8.47E-01	$1.22 \mathrm{E}+02$			$1.57 \mathrm{E}-01$	$8.56 \mathrm{E}+00$	$6.65 \mathrm{E}+03$	
Q(p-game)	14.5		H-3	1.00E-06				H-3	1.00E-06	$2.44 \mathrm{E}+01$	$2.44 \mathrm{E}+01$	
f(p-game)	5			$2.74 \mathrm{E}-08$					$4.10 \mathrm{E}-08$	$1.27 \mathrm{E}+02$	$6.60 \mathrm{E}-04$	
f(s-game)	6			$3.65 \mathrm{E}+01$					$2.44 \mathrm{E}+01$	3.13E-01	$3.69 \mathrm{E}+04$	
Q(s-game)	0.78		Pu-238	1.00E-06	3.11E-02	$3.11 \mathrm{E}-02$		Pu-238	1.00E-06	$2.08 \mathrm{E}-02$	2.08E-02	
Q(w-game)	55			$3.21 \mathrm{E}-05$	$2.29 \mathrm{E}-03$	6.00E-06			$4.82 \mathrm{E}-05$	$1.24 \mathrm{E}-04$	$6.05 \mathrm{E}-08$	
				3.11E-02	$1.47 \mathrm{E}+01$	5.19E+03			2.08E-02	$1.80 \mathrm{E}+02$	3.43E+05	
				Calculated	PRG	\% Differ.			Calculated	PRG	\% Differ.	
		Am-241	Direct	3.93E-02	3.94E-02	-0.3\%	Am-241	Direct	2.62E-02	2.63E-02	-0.4\%	
			BC to Soil	$8.72 \mathrm{E}+00$	$8.75 \mathrm{E}+00$	-0.3\%		BC to Soil	4.72E-01	4.73E-01	-0.2\%	
			BC to Water	$3.27 \mathrm{E}+03$	$3.28 \mathrm{E}+03$	-0.3\%		BC to Water	$9.52 \mathrm{E}+02$	$9.55 \mathrm{E}+02$	-0.3\%	
		Co-60	Direct	2.36E-01	2.36E-01	0.0\%	Co-60	Direct	1.57E-01	1.57E-01	0.0\%	
			BC to Soil	8.47E-01	8.46E-01	0.1\%		BC to Soil	$8.56 \mathrm{E}+00$	$8.56 \mathrm{E}+00$	0.0\%	
			BC to Water	$1.22 \mathrm{E}+02$	$1.22 \mathrm{E}+02$	0.0\%		BC to Water	$6.65 \mathrm{E}+03$	$6.65 \mathrm{E}+03$	0.0\%	
		H-3	Direct	3.65E+01	3.65E+01	0.0\%	H-3	Direct	$2.44 \mathrm{E}+01$	$2.44 \mathrm{E}+01$	0.0\%	
			BC to Soil					BC to Soil	$3.13 \mathrm{E}-01$	3.13E-01	0.0\%	
			BC to Water					BC to Water	$3.69 \mathrm{E}+04$	$3.69 \mathrm{E}+04$	0.0\%	
		Pu-238	Direct	3.11E-02	3.11E-02	0.0\%	Pu-238	Direct	$2.08 \mathrm{E}-02$	$2.07 \mathrm{E}-02$	0.5\%	
			BC to Soil	$1.47 \mathrm{E}+01$	$1.46 \mathrm{E}+01$	0.7\%		BC to Soil	$1.80 \mathrm{E}+02$	$1.80 \mathrm{E}+02$	0.0\%	
			BC to Water	$5.19 \mathrm{E}+03$	$5.18 \mathrm{E}+03$	0.2\%		BC to Water	$3.43 \mathrm{E}+05$	$3.42 \mathrm{E}+05$	0.3\%	

Consumption of game - direct

"PR" "G" "rec-game-ing" " " ("pCi" /"g")"=" "TR" /("S" "F" "f" " " ("risk /"pCi")"x E" "F" "rec" " " ("days" /"yr")" x E" "D" "rec" " " ("yrs")" x IRG "L" "rec" " " ("g" /"day"))

Consumption of ame back-calculated to soil

"PR" "G" _"soil-rec-game-ing" " " ("pCi" /"g")"=" ("PR" "G" _"rec-gameing" " " ("pCi" /"g"))/("T" "F" _"game" " " ("day" /"kg")" x " [("Q" _"pgame" " " " ("kg" /"day")" x " "f" _-"p-game" " " ("1")" x " "f" _"s-game" " ("1") " x " ("R" _"upp" "+" "R" - "es"))"+" ("Q" -"s-game" " " " ("kg" /"day")"x " "f" _"p-game" " " ("1"))]) " x " (("t"_"r" " " ("yr")" x λ " ("1" /"yr"))/(("1-" "e" ^("-ג" "t" -"r"))) Consumption of game - back-calculated to wate
PR" "G" - water-rec-game-ing" ("pCi" /"L")"=" ("PR" G"_"rec-game ing" " " ("pCi" /"g"))/("T" "F" _"game" " " ("day" /"kg")" x " "Q" _"w game" " "("L" /"day")" x " ("1 kg" /"1000 g"))

Consumption of fowl - direct
"PR" "G" _"rec-fowl-ing" " " ("pCi" /"g")"=" "TR" /("S" "F" " "f" " " ("risk" /"pCi")"x E" "F" _"rec" " " ("days" /"yr")" x E" "D" _"rec" " " ("yrs")" x IRG" "F" _"rec" " " ("g" /"day")) Consumption of fowl- back-calculated to soil
"PR" "G" _"soil-rec-fowl-ing" " " ("pCi" /"g")"=" ("PR" "G" _"rec-fowl-ing" " " ("pCi" /"g"))/("T" "F" "fowl" " " ("day" /"kg")" x " [("Q" "p-fowl" " " ("kg" /"day")" x " "f" "p-

/"yr"))/(("1-" "e" ^("-ג" "t" _"r")))
"R" "upp" "=B" "v" "dry" " /" 1000 g "))

Variables	Defaults		Type	Halflife (y)	λ	1-exp(- $\lambda t(\mathrm{cw})$)	SF(w)	SF(imm)
TR	1.00E-06	Am-241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$1.00 \mathrm{E}+00$	$1.04 \mathrm{E}-10$	$1.32 \mathrm{E}-13$
IFW(rec-adj)	6300	Co-60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.58 \mathrm{E}-11$	$2.44 \mathrm{E}-11$
EF(recw-c)	250	H-3	V	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$1.00 \mathrm{E}+00$	5.07E-14	0.00E+00
ED(recw-c)	4	Pu-238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$1.00 \mathrm{E}+00$	1.31E-10	5.96E-16
ET(recw-c)	12							
EV(recw-c)	3							
IRW(recw-c)	0.05			Ingestion	Immersion	Total		
EF(recw-a)	250		Am-241	1.00E-06	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$		
ED(recw-a)	15			6.55E-07	$1.90 \mathrm{E}-12$	6.55E-01		
ET(recw-a)	12			$1.53 \mathrm{E}+00$	$5.27 \mathrm{E}+05$	$1.53 \mathrm{E}+00$		
EV(recw-a)	2		Co-60	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$		
IRW(recw-a)	0.05			9.95E-08	$3.51 \mathrm{E}-10$	9.99E-02		
DFA(rec-adj)	126000			$1.00 \mathrm{E}+01$	$2.85 \mathrm{E}+03$	$1.00 \mathrm{E}+01$		
			H-3	$1.00 \mathrm{E}-06$		$1.00 \mathrm{E}+00$		
				3.19E-10		$3.19 \mathrm{E}-04$		
				3.13E+03		$3.13 \mathrm{E}+03$		
			Pu-238	$1.00 \mathrm{E}-06$	1.00E-06	$1.00 \mathrm{E}+00$		
				$8.25 \mathrm{E}-07$	$8.57 \mathrm{E}-15$	$8.25 \mathrm{E}-01$		
				$1.21 \mathrm{E}+00$	$1.17 \mathrm{E}+08$	$1.21 \mathrm{E}+00$		
				Calculated	PRG	\% Differ.		
		Am-241	Ingestion	$1.53 \mathrm{E}+00$	$1.53 \mathrm{E}+00$	0.0\%		
			Immersion	$5.27 \mathrm{E}+05$	$5.27 \mathrm{E}+05$	0.0\%		
			Total	$1.53 \mathrm{E}+00$	$1.53 \mathrm{E}+00$	0.0\%		
		Co-60	Ingestion	$1.00 \mathrm{E}+01$	$1.01 \mathrm{E}+01$	-1.0\%		
			Immersion	$2.85 \mathrm{E}+03$	$2.85 \mathrm{E}+03$	0.0\%		
			Total	$1.00 \mathrm{E}+01$	$1.00 \mathrm{E}+01$	0.0\%		
		H-3	Ingestion	$3.13 \mathrm{E}+03$	$3.13 \mathrm{E}+03$	0.0\%		
			Immersion					
			Total	$3.13 \mathrm{E}+03$	$3.13 \mathrm{E}+03$	0.0\%		
		Pu-238	Ingestion	$1.21 \mathrm{E}+00$	$1.21 \mathrm{E}+00$	0.0\%		
			Immersion	$1.17 \mathrm{E}+08$	$1.17 \mathrm{E}+08$	0.0\%		
			Total	$1.21 \mathrm{E}+00$	$1.21 \mathrm{E}+00$	0.0\%		

Ingestion of Tapwater

"PR" "G" "rec-water-ing" " " ("pCi" ノ'L")"=" "TR" /("S" "F"_"w" " " ("risk" /"pCi")" x IF" "W" "rec-adj" " " ("L"))'IF" "W" _"rec-adj" " " ("L")"=" ("E" "F" _"recw-c" " " ("day" /"yr")" x E" "D" "recw-c" " " ("yr")" x E" "T" _"recw-c" " " ("hr" /"event")" x E" "V" _"recw-c" " " ("events" /"day")" x IR" "W" _"recw-c" " " ("0.05 L" /"hr"))"+" ("E"
"F" _"recw-a" " " ("day" /"yr")" x E" "D" _"recw-a" " " ("yr")" x E" "T" _"recw-a" " " ("hr" /"event")" x E" "V" _"recw-a" " " ("events" /"day")" x IR" "W" _"recw -a" " "
("0.05 L" /"hr"))
Immersion
"PR" "G" "rec-water-imm" " " ("pCi" 1 "L")"=" "TR" /("S" "F" _imm" " " (("risk" /"yr")/("pCi" /"L"))" x " ("1 yr" /"8760 hr")" x DF" "A" "rec-adj" " " ("hr"))"DF" "A"
_"rec-adj" " " ("hr")"=" ("E" "F" _"recw-c" " " ("day" /"yr")" x E" "D" _"recw-c" " " ("yr")" x E" "V" _"recw-c" " " ("events" /"day")" x E" "T" _"recw-c" " " ("hr" /"event")"
")"+" ("E" "F" _"recw-a" " " ("day" /"yr")" x E" "D" _"recw-a" " " ("yr")" x E" "V" _"recw-a" " " ("events" /"day")" x E" "T" _"recw-a" " " ("hr" /"event"))" "
Total
"PR" "G" _"rec-water-tot" " " ("pCi" /"L")"=" "1" /("1" /("PR" "G" _"rec-water-ing") "+" "1" /("PR" "G" _"rec-water-imm"))

[^2]| Variables | Defauls |
| :---: | :---: |
| TR | 1.00E-06 |
| t(r) | 26 |
| IFS(r-adj) | 1120000 |
| EFF(r-c) | 350 |
| ED(r-c) | 6 |
| IRS(c) | 200 |
| EF(r-a) | 350 |
| ED(r-a) | 20 |
| IRS(a) | 100 |
| IFA(r-adj) | 161000 |
| PEF | $1.36 \mathrm{E}+09$ |
| ET(r-c) | 24 |
| IRA(c) | 10 |
| ET(r-a) | 24 |
| IRA(a) | 20 |
| EF(r) | 350 |
| ED(r) | 26 |
| $\mathrm{ET}(\mathrm{r}-\mathrm{o})$ | 1.752 |
| GSF(0) | 1 |
| ET(r-i) | 16.416 |
| GSF(i) | 0.4 |
| ACF(ext-sv) | |
| MLF | 0.26 |
| R(upv) | Bv (wet) |
| R(es) | MLF |
| IFF(r-adj) | 1389710 |
| IFV(r-adj) | 970970 |
| CPF(r) | 0.25 |
| IRF(r-c) | 68.1 |
| $\operatorname{IRF}(\mathrm{r}-\mathrm{a})$ | 178.1 |
| $\operatorname{IRV}(\mathrm{r}-\mathrm{c})$ | 41.7 |
| $\operatorname{IRV}(\mathrm{r}-\mathrm{a})$ | 126.2 |
| U(m) | 4.69 |
| A(s) | 0.5 |
| $\mathrm{U}(\mathrm{t})$ | 11.32 |
| v | 0.5 |
| A | 16.230 |
| B | 18.776 |
| c | 216.108 |
| F(x) | 0.194 |
| Q/C(wind) | 93.774 |
| A(VF) | 11.911 |
| B(VF) | 18.439 |
| C(VF) | 209.785 |

$\frac{\text { Incidental ingestion of soil }}{\text { " }}$

 "PRG res-sor 4 ("pCi"

 External exposure to ionizing

 Consumption of fruits and veget-sv"

 J" x IR" "F" _"r-a" " " ("178.1 g" /"day"))
"IF" "F" _"r-adj" " " ("970,970 g")"=" (
Consumption of Fruits and Vegetables back-calculated to sol

"R"_"upv" "=B" "v"_-wet" ";" 『" R" §_"es" "=MLF " ("0.26")
Total
Total
'PR" "G" _"res-soil-tot" " " ("pCi" /'g")"=" "1" /("1" /("PR" "G" _"res-soil-ing"))"+" ("1" /("PR" "G" _"res-soil-inh"))"+" ("1" /("PR" "G" _"res-soil-ext"))"+" ("1" /("PR" "G"_"res-soil-prod-ing"))

```
Particulate Emission Factor - Wind
"PE" "F" ."w" "" (("m" _"air" ^"3" )/("k" "g" ."soil" ))"=" "Q" /"C" _"wind" "
(("g"/("m"^"2" "-s"))/("kg"/"m"^"3"))" x " "3600"("s"/"hour")/("0.036
x" ("1-v" )"x" (("U" _"m" " " ("m" /"s"))/("U" _"t" " " ("m" /"s" )) )^"3" "x
F(x)")
"Q" /"C" _"wind" "=A x" "exp" [年"In" "A" _"s" " " ("acre")"-B")^"2" /"C" ]
```

Variables	Defaults
TR	$1.00 \mathrm{E}-06$
$\mathrm{t}(\mathrm{r})$	26
$\mathrm{EF}(\mathrm{r}-\mathrm{c})$	350
$\mathrm{ED}(\mathrm{r}-\mathrm{c})$	6
$\mathrm{EF}(\mathrm{r}-\mathrm{a})$	350
$\mathrm{ED}(\mathrm{r}-\mathrm{a})$	20
$\mathrm{IFA}(\mathrm{rad})$	161000
$\mathrm{ET}(\mathrm{r}-\mathrm{c})$	24
$\mathrm{IRA}(\mathrm{c})$	10
$\mathrm{ET}(\mathrm{r}-\mathrm{a})$	24
$\mathrm{IRA}(\mathrm{a})$	20
$\mathrm{EF}(\mathrm{r})$	350
$\mathrm{ED}(r)$	26
$\mathrm{GSF}(\mathrm{a})$	1
$\mathrm{ET}(\mathrm{r})$	24

	With Halflife Decay			Without Halflife Decay		
	Inhalation	External	Total	Inhalation	External	Total
Am－241	0．00E＋00	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	0．00E＋00	$0.00 \mathrm{E}+00$	\＃DIV／0！	0．00E＋00	0．00E＋00	\＃DIV／0！
	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！
Co－60	0．00E＋00	$0.00 \mathrm{E}+00$	1．00E＋00	1．00E－06	1．00E－06	1．00E＋00
	0．00E＋00	0．00E＋00	\＃DIV／0！	0．00E＋00	0．00E＋00	\＃DIV／0！
	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！
H－3	0．00E＋00		$1.00 \mathrm{E}+00$	1．00E－06		$1.00 \mathrm{E}+00$
	$0.00 \mathrm{E}+00$		\＃DIV／0！	0．00E＋00		\＃DIV／0！
	\＃DIV／0！		\＃DIV／0！I	\＃DIV／0！		\＃DIV／0！
Pu－238	0．00E＋00	0．00E＋00	1．00E＋00	1．00E－06	1．00E－06	$1.00 \mathrm{E}+00$
	0．00E＋00	$0.00 \mathrm{E}+00$	\＃DIV／0！	0．00E＋00	0．00E＋00	\＃DIV／0！
	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！I	\＃DIV／0！	\＃DIV／0！	\＃DIV／0！

	Type	Halflife（y）	λ	$1-\exp (-\lambda t(r))$	SF（i）	SF（sub）
Am－241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$4.09 \mathrm{E}-02$	$0.00 \mathrm{E}+00$	\＃REF！
Co－60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	\＃REF！
H－3	M	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$7.69 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	
Pu－238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$1.86 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$

Inhalation（with half－life decay

＂PR＂＂G＂＿＂res－air－inh－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR x＂＂t＂＿＂r＂＂＂（＂yr＂）＂x λ＂（＂1＂／＂yr＂）－／（（＂1－＂＂e＂ ＾（＂－λ＂＂t＂＿＂r＂））＂x SFi＂（＂risk＂／＂pCi＂）＂x IF＂＂A＂＿＂r－adj＂＂＂（＂161，000＂＂m＂＾＂ 3 ＂））
＂IF＂＂A＂＿＂r－adj＂＂＂（＂161，000＂＂m＂＾＂3＂）＂＝＂（＂E＂＂F＂＿＂r－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＿＂r－c＂＂＂（＂6 yr＂）＂x E＂ ＂T＂＿＂r－c＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hrs＂）＂x IR＂＂A＂＂r－c＂＂＂（（＂10＂＂m＂＾＂3＂）／＂day＂））＂＋＂（『＂EF＂】 ＿＂r－a＂＂＂（＂350 day＂／＂yr＂）＂x＂【＂ED＂§＿＂r－a＂＂＂（＂20 yr＂）＂x＂〔＂ET＂§＿＂r－a＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hrs＂）＂x＂［＂IRA＂\＿＂r－a＂＂＂（（＂20＂＂m＂＾＂3＂）／＂day＂））
External exposure to ionizing radiation（with half－life decay）
＂PR＂＂G＂＂res－air－sub－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂- ＂TR x＂＂t＂＂r＂＂＂＂（＂yr＂）＂x λ＂＂（＂1＂／＂yr＂）－／（＂＂1－＂＂e＂
 ＾（＂－ג＂＂t＂＿＂r＂））＂x S＂＂F＂＿＂sub＂＂＂（（＂risk＂／＂yr＂）／（＂pCi＂／＂m＂＾＂3＂））＂x E＂＂F＂－＂r＂＂＂（＂350 day＂／＂yr＂）＂x＂（ yr＂－／／＂365 da
＂＂（＂1．0＂））
Total（with half－life decay）
＂PR＂＂G＂＿＂res－air－tot－decay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＿＂res－air－inh－decay＂）＂＋＂＂1＂／（＂PR＂
＂G＂＿＂res－air－sub－decay＂）＂＂）
nhalation（without half－life decay）
＂PR＂＂G＂＿＂res－air－inh－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂ト＂TR＂†／（＂SFi＂（＂risk＂／＂pCi＂）＂x IF＂＂A＂＿＂r－adj＂＂＂（＂161，000＂＂m＂＾＂3＂））
＂IF＂＂A＂＿＂r－adj＂＂＂（＂161，000＂＂m＂＾＂3＂）＂＝＂（＂E＂＂F＂＿＂r－c＂＂＂（＂350 day＂／＂yr＂）＂x E＂＂D＂＿＂r－c＂＂＂（＂6 yr＂）＂x E＂＂T＂＿＂r－c＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂24 hrs＂）＂x
 hrs＂）＂x＂［＂IRA＂）＿＂r－a＂＂＂（（＂20＂＂m＂＾＂3＂）／＂day＂）

External exposure to ionizing radiation（without half－life decay）

＂PR＂＂G＂＿＂res－air－sub－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂卜＂TR＂－／（＂S＂＂F＂＿＂sub＂＂＂（（＂risk＂／＂yr＂）／（＂pCi＂／＂m＂＾＂3＂））＂x E＂＂F＂＿＂r＂＂＂（＂350 day＂／＂yr＂）＂x＂（
－／／＂365 days＂）＂x E＂＂D＂＿＂r＂＂＂（＂26 yr＂）＂x E＂＂T＂＿＂r＂＂＂（＂24 hr＂／＂day＂）＂x＂（＂1 day＂／＂ 24 hrs＂）＂x GS＂＂F＂＿＂a＂＂＂（＂1．0＂））
Total（without half－life decay）
＂PR＂＂G＂＿＂res－air－tot－nodecay＂＂＂（＂pCi＂／＂m＂＾＂3＂）＂＝＂＂1＂／（＂1＂／（＂PR＂＂G＂＿＂res－air－inh－nodecay＂）＂＋＂＂1＂／（＂PR＂＂G＂＿＂res－air－sub－nodecay＂）＂＂）

Variables	Defauts
TR	1.00E-06
t(r)	26
$\mathrm{IFW}^{\text {(r-adj) }}$	1913
EF(r-c)	350
ED(r-c)	6
iRW(c)	0.78
EF(r-a)	350
ED(r-a)	20
$\operatorname{lRW}(\mathrm{a})$	2.5
IFA(r-adi)	161000
DFA(r-adj)	6104
ET(r-c)	24
IRA(c)	10
ET(r-a)	24
IRA(a)	20
Ef(r)	350
ED(r)	26
ET(r-o)	1.752
GSF(0)	1
ET(r-i)	6.416
GSFFi)	0.4
MLF	0.26
R(upv)	Bv(wet)
R(es)	MLF
IFF(r-adi)	1389710
IFV(r-adi)	970970
CPF(r)	0.25
IRFF(r-c)	68.1
$\operatorname{IRF}(\mathrm{r}-\mathrm{a}$	178.1
$\operatorname{IRV}(\mathrm{rc})$	41.7
$\operatorname{IRV}(\mathrm{r}-\mathrm{a}$	126.2
EV(r-c)	1
$\mathrm{EV}(\mathrm{r}-\mathrm{a})$	1
F	0.25
$1(f)$	0.42
$1(r)$	3.62
K	0.5
$\lambda(\mathrm{HL})$	0.000027
P	240
T	1
$t(a-$ event $)$	71
t(b)	10950
$t($ c-event	0.54
$\mathrm{t}(\mathrm{v})$	60
$t(w)$	14
Y(v)	2
$\mathrm{IRF}(\mathrm{a})$	54
CFf(ish)	1

	Ingestion of Tapwater	Inhalation	Immersion	Fruits \&	Total		Fish
Am-241	1.00E-06		1.00E-06	\#DIV/0!	1.00E+00	Am-241	1.00E-06
	0.00E +00		\#VALUE!	\#VaLUE!	\#DIV/0!		\#REF!
	\#DIV/0!		\#VALUE!	\#DIV/0!	\#DIV/0:		\#REF!
Co-60	1.00E-06		1.00E-06	7.09E-10	$1.00 \mathrm{E}+00$	Co-60	1.00E-06
	0.00E+00		\#VALUE!	\#VaLUE!	\#DIV/0!		\#REF!
	\#DIV/0!		\#VALUE!	\#VaLUE!	\#DIV/0,		\#REF!
H-3	1.00E-06	1.00E-06		\#DIV/0!	$1.00 \mathrm{E}+00$	H-3	1.00E-06
	0.00E+00	0.00E+00		\#DIV/0!	\#DIV/0!		0.00E+00
	\#DIV/0!	\#DIV/0!		\#DIV/0!	\#DIV/0!		\#DIV/0!
Pu-238	1.00E-06		1.00E-06	\#DIV/0!	$1.00 \mathrm{E}+00$	Pu-238	1.00E-06
	\#VALUE!		\#VALUE!	\#VALUE!	\#VALUE!		0.00E+00
	\#Value!		\#VALUE!	\#DIV/0!	\#Value:		\#DIV/0!

	lrer(rup)	Irr(res)	Irr(dep)
Am-241	\#VALUE!	\#VALUE!	$1.38 \mathrm{E}+00$
	0.00E+00	0.00E+00	$7.28 \mathrm{E}+00$
	\#VALUE!	\#VALUE!	1.90E-01
Co-60	\#VALUE!	\#VALUE!	3.18E-01
	$0.00 \mathrm{E}+00$	0.00E+00	$1.68 \mathrm{E}+00$
	\#VALUE!	\#VALUE!	1.90E-0
H-3	$0.00 \mathrm{E}+$. 00 E	0.00E+00
	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00
	\#DIV/0!	\#DIV/0!	\#DIV/0!
Pu-238	\#VALUE!	0.00E+00	0.00E+00
	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$
	\#VALUE!	\#DIV/0!	\#DIV/0!

		Calculated	PRG	\% Differ.
Am-241	Fish	$1.52 \mathrm{E}-02$	$1.52 \mathrm{E}-02$	0.0%
Co-60	Fish	$9.13 \mathrm{E}-02$	$9.12 \mathrm{E}-02$	0.1%
$\mathrm{H}-3$	Fish	$1.41 \mathrm{E}+01$	$1.41 \mathrm{E}+01$	0.0%
Pu-238	Fish	$1.20 \mathrm{E}-02$	$1.20 \mathrm{E}-02$	0.0%

		Calculated	PRG	\% Differ.			Calculated	PRG	\% Differ.
$\underset{\sim}{z}$	Ingestion	5.02E-01	5.04E-01	0.4\%	T	Ingestion	$1.03 \mathrm{E}+03$	$1.03 \mathrm{E}+03$	0.0\%
	Inhalation					Inhalation	$1.47 \mathrm{E}+01$	${ }^{1.47 \mathrm{E}+01}$.0\%
	Immersion	1.09E+07	1.09E+07	0.0\%		Immersion			
	Lambda i	4.39E-06	4.36E-06	0.7\%		Lambdai	1.54E-04	1.54E-04	0.0\%
	Lambda B	3.14E-05	3.14E-05	0.0\%		Lambda B	1.81E-04	1.81E-04	0.0%
	Lambda E	4.95E-02	4.95E-02	0.0\%		Lambda E	4.93E-02	$4.95 \mathrm{E}-02$	-0.4\%
	Irr(rup)	6.67E-04	6.69E-04	-0.3\%		lir(rup)	$8.61 \mathrm{E}+01$	$8.62 \mathrm{E}+01$	-0.1\%
	Irr(res)	$9.08 \mathrm{E}+00$	$9.08 \mathrm{E}+00$	0.0\%		lri(res)	$4.66 \mathrm{E}+00$	$4.67 \mathrm{E}+00$	-0.2
	lrr(dep)	$3.64 \mathrm{E}+00$	$3.64 \mathrm{E}+00$	0.0\%		lrr(dep)	$3.65 \mathrm{E}+00$	$3.64 \mathrm{E}+00$	0.3%
	F\&V	9.93E-01	9.97e-01	-0.4\%		F\&V	$2.76 \mathrm{E}+02$	$2.75 \mathrm{E}+02$	0.4
	Total	3.34E-01	3.31E-01	0.9\%		Total	$1.37 \mathrm{E}+01$	$1.37 \mathrm{E}+01$	0.0
نٌ	Ingestion	$3.31 \mathrm{E}+00$	3.32E+00	-0.3\%	$\begin{gathered} \infty \\ \underset{ㄹ}{2} \\ \hline \end{gathered}$	Ingestion	3.99E-01	3.98E-01	0.3\%
	Inhalation					Inhalation			
	mmersion	5.88E+04	5.88E+04	0.0\%		Immersion	$2.41 \mathrm{E}+09$	$2.41 \mathrm{E}+09$	0.0\%
	ambda i	3.60E-0	4	0.0\%		Lambda i	5	2.16	0.0
	lambda B	878-04	3.87E-04	0.0\%		Lambda B	4.86E-05	86E-	0.0\%
	lambda E	.91E-02	4.95E-02	-0.8\%		Lambda E	$4.95 \mathrm{E}-02$	$4.95 \mathrm{E}-02$	0.0\%
	Irr(ru)	$7.10 \mathrm{E}-02$	7.10	\%		Irr(rup)	$2.65 \mathrm{E}-04$	2	0.0\%
	Irr(res)	$2.50 \mathrm{E}+00$	$2.50 \mathrm{E}+00$	0.0\%		Irr(res)	$8.32 \mathrm{E}+00$	$8.32 \mathrm{E}+00$	0.0\%
	lri(dep)	$3.66 \mathrm{E}+00$	$3.64 \mathrm{E}+00$	0.5\%		lri(dep)	$3.64 \mathrm{E}+00$	3.64E+00	0.0
	F\&V	$1.22 \mathrm{E}+01$	$1.22 \mathrm{E}+01$	0.0\%		F\&V	8.38E-01	$8.36 \mathrm{E}-01$	0.2\%
	Total	2.6	2.61 +00	-0.4\%		Total	2.70E-01	2.70e-01	0.0\%

	Type	Hallife (y)	λ		SF(w)	Sf(i)	SF(imm)	Bv(wet)	Hallife (d)	$\lambda(\mathrm{i})$	λ (B)	$1-$ exp $-\lambda($ (B) $)(t) \mid$	λ (E)	exp $-\lambda($ ($)$) ${ }^{\text {c/v }}$	SFF(f)
Am-241	M	$4.32 \mathrm{E}+02$	1.60 E	4.09E-02	\#REF!	\#REF!	0.00E+00	1.91E-05	$1.58 \mathrm{E}+05$	-4.39E-0	05	2.91E-01	4.95E-02	9.49E-01	\#REF!
Co-60	M	$5.27 \mathrm{E}+00$	1.311-01	-01	F!	F!	$0.00 \mathrm{E}+00$	7.40E-03	E+03	-3.60E-04	E-04	E-01	91E-02	-01	\#REF!
H-3	M	$1.23 \mathrm{E}+01$	5.63E-0	7.69E-0	\#REF!	\#REF!	1.04E-10	$4.80 \mathrm{E}+00$	$4.49 \mathrm{E}+6$	-1.54E-0	1.81E-0	8.63E-0	4.93E-0	9.48E-0	\#REF!
H-3	V	$1.23 \mathrm{E}+01$	5.63E-0	7.69E-0	\#REF!	\#RE	SF(w)	$4.80 \mathrm{E}+0$	$4.49 \mathrm{E}+{ }^{\text {a }}$	-1.54E-02	1.81E-0	8.63E-0	4.93E-02	9.48	!
Pu-238	M	8.77E+01	7.90E-03	1.86E-01	\#R	\#RE	1.58E-11	8.27E-06	3.20E+04	-2.16E-05	4.86E-05	4.13E-01	4.95E-02	9.49E-01	\#REF!

```
Ingestion of Tapwater
```



``` -
\(\frac{\text { Inhalation (Only calculated for C-14, } \mathrm{H}-3, \text { Ra-224, Ra-226, and Ra-226+D) }}{\text { IR }}\)
```



```
Consumption of fruits and vegetables
```



``` - "r-c" " " "
```



```
Consumption of fruits and vegetables back-calculated to water
```



``` "I" _"f" "xTx [ ["1-" "e" ^("-" "久" _"E" "x " "t" _"v" ) ])/("Y" _"v" "x" "入" _"E" )
Total
```

"G" _"water-tot" " " ("pCi" "L")"=" "1" /("1" /("PR" "G"_"water-ing") "+" "1" /("PR" "G"_"water-inh") "+" "1" /("PR" "G" _"water-imm") "+" "1" /("PR" "G"_"water-prod"))
Consumption of fish
'PR" "G" _"res-fsh-ing" " " ("pCi" /"g")"=" "TR" /("S" "F" "fish" " " ("risk" /"pCi")"x E" "F"_"r" " " ("350 day" /"yr")"x E" "D"_"r" " " ("26 yr")"x IR" "F" "'a" " " ("54 g" /"day")"x C" "F" "fish" " (1)")

Variables	Substitutes
TR	1.00E-03
t(r)	40
IFS(r-adj)	1350000
EF(r-c)	300
ED(r-c)	10
IRS(c)	180
$\mathrm{EF}(\mathrm{r}-\mathrm{a})$	300
ED(r-a)	30
IRS(a)	90
IFA(r-adj)	195000
PEF	$6.18 \mathrm{E}+08$
ET(r-c)	14
IRA(c)	15
ET(r-a)	18
IRA(a)	25
EF(r)	300
ED(r)	40
ET(r-o)	2.354
GSF(o)	at 10 cm
ET(r-i)	14.752
GSF(i)	0.6
ACF(ext-sv)	at 1m(2)
MLF	0.38
R(upv)	Bv(wet)
R(es)	MLF
IFF(r-adj)	1890000
IFV(r-adj)	1350000
CPF(r)	0.3
IRF(r-c)	75
$\operatorname{IRF}(\mathrm{r}-\mathrm{a})$	185
IRV(r-c)	48
$\operatorname{IRV}(\mathrm{r}-\mathrm{a})$	134
$U(\mathrm{~m})$	5.75
A(s)	10
U(t)	12.5
V	0.8
A	14.835
B	17.926
C	204.152
$\mathrm{F}(\mathrm{x})$	0.408
Q/C(wind)	49.038

	Ingestion	Inhalation	External	Consump		Total
Am-241	$6.42 \mathrm{E}-05$	$6.42 \mathrm{E}-05$	$6.42 \mathrm{E}-05$	$1.00 \mathrm{E}-03$	$2.02 \mathrm{E}+01$	$1.00 \mathrm{E}+00$
	$1.54 \mathrm{E}-08$	$7.40 \mathrm{E}-10$	$2.26 \mathrm{E}-09$	$1.30 \mathrm{E}-04$	$1.03 \mathrm{E}+00$	$4.82 \mathrm{E}-02$
	$4.16 \mathrm{E}+03$	$8.67 \mathrm{E}+04$	$2.84 \mathrm{E}+04$	$7.68 \mathrm{E}+00$	$2.09 \mathrm{E}+01$	$2.07 \mathrm{E}+01$
	$5.26 \mathrm{E}-03$	$5.26 \mathrm{E}-03$	$5.26 \mathrm{E}-03$	$1.00 \mathrm{E}-03$	$1.19 \mathrm{E}+02$	$1.00 \mathrm{E}+00$
	$5.12 \mathrm{E}-08$	$3.17 \mathrm{E}-11$	$1.60 \mathrm{E}-05$	$2.17 \mathrm{E}-05$	$5.29 \mathrm{E}+00$	$4.63 \mathrm{E}-03$
	$1.03 \mathrm{E}+05$	$1.66 \mathrm{E}+08$	$3.29 \mathrm{E}+02$	$4.61 \mathrm{E}+01$	$6.30 \mathrm{E}+02$	$2.16 \mathrm{E}+02$
$\mathrm{H}-3$		$2.25 \mathrm{E}-03$		$1.00 \mathrm{E}-03$	$1.38 \mathrm{E}+03$	$1.00 \mathrm{E}+00$
	$3.16 \mathrm{E}-04$	$3.16 \mathrm{E}-04$	$3.16 \mathrm{E}-04$	$1.00 \mathrm{E}-03$	$1.60 \mathrm{E}+01$	$1.00 \mathrm{E}+00$
	$8.23 \mathrm{E}-08$	$4.47 \mathrm{E}-09$	$4.07 \mathrm{E}-11$	$1.64 \mathrm{E}-04$	$1.17 \mathrm{E}+00$	$5.38 \mathrm{E}-02$
	$3.84 \mathrm{E}+03$	$7.08 \mathrm{E}+04$	$7.76 \mathrm{E}+06$	$6.09 \mathrm{E}+00$	$1.87 \mathrm{E}+01$	$1.86 \mathrm{E}+01$

		Calculated	PRG	\% Differ.
$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\substack{c}}{1} \end{aligned}$	Ingestion	$4.16 \mathrm{E}+03$	$4.16 \mathrm{E}+03$	0.0\%
	Inhalation	8.67E+04	8.67E+04	0.0\%
	External	$2.84 \mathrm{E}+04$	$2.85 \mathrm{E}+04$	-0.4\%
	Consump.	$2.09 \mathrm{E}+01$	$2.09 \mathrm{E}+01$	0.0\%
	Total	$2.07 \mathrm{E}+01$	$2.07 \mathrm{E}+01$	0.0\%
$\begin{aligned} & \text { ò } \\ & \text { í } \end{aligned}$	Ingestion	$1.03 \mathrm{E}+05$	$1.02 \mathrm{E}+05$	1.0\%
	Inhalation	$1.66 \mathrm{E}+08$	$1.65 \mathrm{E}+08$	0.6\%
	External	$3.29 \mathrm{E}+02$	$3.28 \mathrm{E}+02$	0.3\%
	Consump.	$6.30 \mathrm{E}+02$	$6.27 \mathrm{E}+02$	0.5\%
	Total	$2.16 \mathrm{E}+02$	$2.15 \mathrm{E}+02$	0.5\%
$\stackrel{m}{ \pm}$	Ingestion			
	Inhalation	$2.59 \mathrm{E}+02$	$2.59 \mathrm{E}+02$	0.0\%
	External			
	Consump.	$3.47 \mathrm{E}+03$	$3.47 \mathrm{E}+03$	0.0\%
	Total	$2.41 \mathrm{E}+02$	$2.41 \mathrm{E}+02$	0.0\%
$\stackrel{\infty}{\underset{\sim}{2}}$	Ingestion	$3.84 \mathrm{E}+03$	$3.84 \mathrm{E}+03$	0.0\%
	Inhalation	$7.08 \mathrm{E}+04$	$7.08 \mathrm{E}+04$	0.0\%
	External	$7.76 \mathrm{E}+06$	$7.79 \mathrm{E}+06$	-0.4\%
	Consump.	$1.87 \mathrm{E}+01$	$1.87 \mathrm{E}+01$	0.0\%
	Total	$1.86 \mathrm{E}+01$	$1.86 \mathrm{E}+01$	0.0\%

	Type	Halflife (y)	λ	1-exp(- $\lambda t(r)$)	SF(s)	SF(i)	Q/C	PEF	SF(ext-sv)	GSF @ 10cm	ACF(ext-sv)	Bv (wet)	SF(f)
Am-241	M	$4.32 \mathrm{E}+02$	1.60E-03	6.22E-02	$1.84 \mathrm{E}-10$	3.77E-08	49.038	$6.18 \mathrm{E}+08$	$2.77 \mathrm{E}-08$	$9.60 \mathrm{E}-03$	1.08E-01	$1.91 \mathrm{E}-05$	$1.34 \mathrm{E}-10$
Co-60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$3.81 \mathrm{E}-11$	$1.01 \mathrm{E}-10$	49.038	$6.18 \mathrm{E}+08$	$1.24 \mathrm{E}-05$	$3.24 \mathrm{E}-01$	$9.83 \mathrm{E}-02$	$7.40 \mathrm{E}-03$	$2.23 \mathrm{E}-11$
H-3	M	$1.23 \mathrm{E}+01$	5.63E-02	8.95E-01		$8.47 \mathrm{E}-13$		$1.70 \mathrm{E}+01$			$9.00 \mathrm{E}-01$	$4.80 \mathrm{E}+00$	$1.44 \mathrm{E}-13$
Pu-238	M	8.77E+01	7.90E-03	$2.71 \mathrm{E}-01$	$2.25 \mathrm{E}-10$	$5.22 \mathrm{E}-08$	49.038	$6.18 \mathrm{E}+08$	$6.92 \mathrm{E}-11$	8.72E-04	$1.79 \mathrm{E}-01$	8.27E-06	$1.69 \mathrm{E}-10$

Variables	Substitutes
TR	$2.00 \mathrm{E}-06$
$\mathrm{t}(\mathrm{r})$	74
$\mathrm{EF}(\mathrm{r}-\mathrm{c})$	280
$\mathrm{ED}(\mathrm{r}-\mathrm{c})$	24
$\mathrm{EF}(\mathrm{r}-\mathrm{a})$	360
$\mathrm{ED}(\mathrm{r}-\mathrm{a})$	50
$\mathrm{IFA}(\mathrm{r}-\mathrm{adj})$	873540
$\mathrm{ET}(\mathrm{r}-\mathrm{c})$	18
$\mathrm{IRA}(\mathrm{c})$	26
$\mathrm{ET}(\mathrm{r}-\mathrm{a})$	22
$\mathrm{IRA}(\mathrm{a})$	45
$\mathrm{EF}(\mathrm{r})$	334
$\mathrm{ED}(\mathrm{r})$	74
$\mathrm{GSF}(\mathrm{a})$	3
$\mathrm{ET}(\mathrm{r})$	21

	Type	Halflife (y)	λ	$1-\exp (-\lambda t(\mathrm{r}))$	SF(i)	SF(sub)
Am-241	M	$4.32 \mathrm{E}+02$	$1.60 \mathrm{E}-03$	$1.12 \mathrm{E}-01$	$3.77 \mathrm{E}-08$	$5.81 \mathrm{E}-11$
Co-60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$1.01 \mathrm{E}-10$	$1.13 \mathrm{E}-08$
$\mathrm{H}-3$	M	$1.23 \mathrm{E}+01$	$5.63 \mathrm{E}-02$	$9.85 \mathrm{E}-01$	$8.47 \mathrm{E}-13$	
Pu-238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	$4.43 \mathrm{E}-01$	$5.22 \mathrm{E}-08$	$2.56 \mathrm{E}-13$

		Calculated	PRG	\% Differ.
	Inhalation	6.44E-05	6.44E-05	0.0\%
	External	$2.08 \mathrm{E}+02$	$2.09 \mathrm{E}+02$	-0.5\%
	Total	$6.44 \mathrm{E}-05$	$6.44 \mathrm{E}-05$	0.0\%
	Inhalation	6.07E-05	6.07E-05	0.0\%
	External	$1.96 \mathrm{E}+02$	$1.97 \mathrm{E}+02$	-0.5\%
	Total	6.07E-05	6.07E-05	0.0\%
$\begin{aligned} & \text { oi } \\ & \text { í } \end{aligned}$	Inhalation	$2.21 \mathrm{E}-01$	$2.20 \mathrm{E}-01$	0.5\%
	External	$9.83 \mathrm{E}+00$	$9.88 \mathrm{E}+00$	-0.5\%
	Total	2.16E-01	$2.15 \mathrm{E}-01$	0.5\%
	Inhalation	2.27E-02	2.27E-02	0.0\%
	External	$1.01 \mathrm{E}+00$	$1.02 \mathrm{E}+00$	-1.0\%
	Total	$2.22 \mathrm{E}-02$	$2.22 \mathrm{E}-02$	0.0\%
$\begin{gathered} m \\ I \end{gathered}$	Inhalation	$1.14 \mathrm{E}+01$	$1.14 \mathrm{E}+01$	0.0\%
	External			
	Total	$1.14 \mathrm{E}+01$	$1.14 \mathrm{E}+01$	0.0\%
	Inhalation	$2.70 \mathrm{E}+00$	$2.70 \mathrm{E}+00$	0.0\%
	External			
	Total	$2.70 \mathrm{E}+00$	$2.70 \mathrm{E}+00$	0.0\%
$\stackrel{\infty}{\underset{\sim}{2}}$	Inhalation	5.79E-05	$5.79 \mathrm{E}-05$	0.0\%
	External	$5.89 \mathrm{E}+04$	$5.89 \mathrm{E}+04$	0.0\%
	Total	$5.79 \mathrm{E}-05$	$5.79 \mathrm{E}-05$	0.0\%
	Inhalation	$4.39 \mathrm{E}-05$	$4.39 \mathrm{E}-05$	0.0\%
	External	$4.46 \mathrm{E}+04$	$4.46 \mathrm{E}+04$	0.0\%
	Total	$4.39 \mathrm{E}-05$	$4.39 \mathrm{E}-05$	0.0\%

Variables	Substitutes
TR	$2.00 \mathrm{E}-03$
t(r)	49
IFW(r-adj)	37166
EF(r-c)	120
ED(r-c)	12
IRW(c)	1.4
EF(r-a)	250
ED(r-a)	37
IRW(a)	3.8
IFA(r-adj)	274111.7
DFA(r-adj)	51434
ET(r-c)	12
IRA(c)	6
$\mathrm{ET}(\mathrm{r}-\mathrm{a})$	20
IRA(a)	35
EF(r)	218
ED(r)	49
ET(r-o)	
GSF(0)	
ET(r-i)	
GSF(i)	
MLF	0.45
R(upv)	Bv(wet)
R(es)	MLF
IFF(r-adj)	2122010
IFV(r-adj)	1433800
CPF(r)	0.38
IRF(r-c)	54
IRF(r-a)	221
IRV(r-c)	45
IRV (r-a)	148
EV(r-c)	3
$\mathrm{EV}(\mathrm{r}-\mathrm{a})$	2
F	0.4
I(f)	0.56
I(r)	5.48
K	1.2
Lambda HL	0.000065
P	285
T	3
t(a-event)	2.5
t(b)	12000
t(c-event)	1.2
t (v)	75
t(w)	18
Y(v)	5
IRF(a)	65
CF(fish)	1

	Ingestion of Tapwater	Inhalation	Immersion	Fruits \& Veg.	Total
Am-241	$2.00 \mathrm{E}-03$		$2.00 \mathrm{E}-03$	\#DIV/0!	1.00E+00
	$0.00 \mathrm{E}+00$		0.00E+00	\#DIV/0!	\#DIV/0!
	\#DIV/0!		\#DIV/0!	\#DIV/0!	\#DIV/0!
Co-60	$2.00 \mathrm{E}-03$		$2.00 \mathrm{E}-03$	\#DIV/0!	1.00E+00
	0.00E+00		0.00E+00	\#DIV/0!	\#DIV/0!
	\#DIV/0!		\#DIV/0!	\#DIV/0!	\#DIV/0!
H-3	$2.00 \mathrm{E}-03$	2.00E-03		\#DIV/0!	1.00E+00
	\#REF!	\#REF!		\#REF!	\#REF!
	\#REF!	\#REF!		\#DIV/0!	\#REF!
Pu-238	$2.00 \mathrm{E}-03$		2.00E-03	\#DIV/0!	1.00E+00
	\#REF!		\#REF!	\#REF!	\#REF!
	\#REF!		\#REF!	\#DIV/0!	\#REF!

	Irr(rup)	Irr(res)	Irr(dep)
Am-241	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	\#DIV/0!	\#DIV/0!	\#DIV/0!
	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	\#DIV/0!	\#DIV/0!	\#DIV/0!
3	\#REF!	\#REF!	$0.00 \mathrm{E}+00$
	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!
Pu-238	\#REF!	\#REF!	0.00E+00
	\#REF!	\#REF!	\#REF!
	\#REF!	\#REF!	\#REF!

		Calculated	PRG	\% Differ.			Calculated	PRG	\% Differ.
$\begin{gathered} \underset{\sim}{\underset{~}{c}} \\ \underset{y}{c} \end{gathered}$	Ingestion	$5.17 \mathrm{E}+02$	$5.17 \mathrm{E}+02$	0.0\%	+	Ingestion	1.06E+06	$1.06 \mathrm{E}+06$	0.0\%
	Inhalation					Inhalation	7.18E+03	7.18E+03	0.0\%
	Immersion	$2.58 \mathrm{E}+09$	$2.58 \mathrm{E}+09$	0.0\%		Immersion			
	Lambda i	$4.39 \mathrm{E}-06$	4.39E-06	0.0\%		Lambda i	$1.54 \mathrm{E}-04$	$1.54 \mathrm{E}-04$	0.0\%
	Lambda B	$6.94 \mathrm{E}-05$	6.94E-05	0.0\%		Lambda B	$2.19 \mathrm{E}-04$	2.19E-04	0.0\%
	Lambda E	$3.85 \mathrm{E}-02$	3.85E-02	0.0\%		Lambda E	$3.83 \mathrm{E}-02$	3.85E-02	-0.5\%
	Irr(rup)	$1.20 \mathrm{E}-03$	1.20E-03	0.0\%		Irr(rup)	$1.56 \mathrm{E}+02$	$1.56 \mathrm{E}+02$	0.0\%
	Irr(res)	$2.82 \mathrm{E}+01$	$2.82 \mathrm{E}+01$	0.0\%		Irr(res)	$1.46 \mathrm{E}+01$	$1.47 \mathrm{E}+01$	-0.7\%
	Irr(dep)	$1.81 \mathrm{E}+01$	$1.81 \mathrm{E}+01$	0.0\%		Irr(dep)	$1.81 \mathrm{E}+01$	$1.81 \mathrm{E}+01$	0.0\%
	F \& V	$2.39 \mathrm{E}+02$	$2.39 \mathrm{E}+02$	0.0\%		F \& V	$1.20 \mathrm{E}+05$	$1.20 \mathrm{E}+05$	0.0\%
	Total	$1.63 \mathrm{E}+02$	$1.63 \mathrm{E}+02$	0.0\%		Total	$6.73 \mathrm{E}+03$	$6.73 \mathrm{E}+03$	0.0\%
$\begin{aligned} & \text { ò } \\ & \dot{0} \end{aligned}$	Ingestion	$3.41 \mathrm{E}+03$	$3.41 \mathrm{E}+03$	0.0\%	$\begin{gathered} \underset{\sim}{\infty} \\ \stackrel{j}{2} \end{gathered}$	Ingestion	$4.11 \mathrm{E}+02$	$4.11 \mathrm{E}+02$	0.0\%
	Inhalation					Inhalation			
	Immersion	$1.40 \mathrm{E}+07$	$1.40 \mathrm{E}+07$	0.0\%		Immersion	$5.72 \mathrm{E}+11$	$5.72 \mathrm{E}+11$	0.0\%
	Lambda i	$3.60 \mathrm{E}-04$	3.61E-04	-0.3\%		Lambda i	$2.16 \mathrm{E}-05$	$2.17 \mathrm{E}-05$	-0.5\%
	Lambda B	$4.25 \mathrm{E}-04$	4.26E-04	-0.2\%		Lambda B	$8.66 \mathrm{E}-05$	8.67E-05	-0.1\%
	Lambda E	$3.81 \mathrm{E}-02$	3.85E-02	-1.0\%		Lambda E	3.85E-02	3.85E-02	0.0\%
	Irr(rup)	$1.33 \mathrm{E}-01$	1.33E-01	0.0\%		Irr(rup)	$4.75 \mathrm{E}-04$	4.75E-04	0.0\%
	Irr(res)	$8.09 \mathrm{E}+00$	$8.08 \mathrm{E}+00$	0.1\%		Irr(res)	$2.58 \mathrm{E}+01$	$2.58 \mathrm{E}+01$	0.0\%
	lr (dep)	$1.82 \mathrm{E}+01$	$1.81 \mathrm{E}+01$	0.6\%		Irr(dep)	$1.81 \mathrm{E}+01$	$1.81 \mathrm{E}+01$	0.0\%
	F \& V	$2.51 \mathrm{E}+03$	$2.53 \mathrm{E}+03$	-0.8\%		F \& V	$2.00 \mathrm{E}+02$	$2.00 \mathrm{E}+02$	0.0\%
	Total	$1.45 \mathrm{E}+03$	$1.45 \mathrm{E}+03$	0.0\%		Total	$1.34 \mathrm{E}+02$	$1.34 \mathrm{E}+02$	0.0\%

	Fish					
Am-241	$2.00 \mathrm{E}-03$					
	$0.00 \mathrm{E}+00$					
	\#DIV/0!					
Co-60	$2.00 \mathrm{E}-03$					
	0.00E+00					
	\#DIV/0!					
H-3	2.00E-03					
	0.00E+00			Calculated	PRG	\% Differ.
	\#DIV/0!	Am-241	Fish	$2.15 \mathrm{E}+01$	$2.15 \mathrm{E}+01$	0.0\%
Pu-238	$2.00 \mathrm{E}-03$	Co-60	Fish	$1.29 \mathrm{E}+02$	$1.29 \mathrm{E}+02$	0.0\%
	0.00E+00	H-3	Fish	$2.00 \mathrm{E}+04$	$2.00 \mathrm{E}+04$	0.0\%
	\#DIV/0!	Pu-238	Fish	$1.70 \mathrm{E}+01$	$1.70 \mathrm{E}+01$	0.0\%

	Type	Halfilife (y)	λ	$\|1-\exp (-\lambda t(r))\|$	SF(w)	SF(i)	SF(imm)	Bv (wet)	Halflife (d)	$\lambda(\mathrm{i})$	λ (B)	-expl $-\lambda(\mathrm{B})+\mathrm{t}$ ($\lambda(\mathrm{E})$		SF(f)
Am-241	M	$4.32 \mathrm{E}+02$	1.60E-03	$7.56 \mathrm{E}-02$	\#REF!	\#REF!	1.01E-10	$1.91 \mathrm{E}-05$	$1.58 \mathrm{E}+05$	-4.39E-06	$6.94 \mathrm{E}-05$	$5.65 \mathrm{E}-01$	$3.85 \mathrm{E}-02$	$9.44 \mathrm{E}-01$	\#REF!
Co-60	M	$5.27 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	\#REF!	\#REF!	1.95E-14	7.40E-03	$1.92 \mathrm{E}+03$	-3.60E-04	4.25E-04	$9.94 \mathrm{E}-01$	3.81E-02	$9.43 \mathrm{E}-01$	\#REF!
H-3	M	$1.23 \mathrm{E}+01$	5.63E-02	9.37E-01	\#REF!	\#REF!	8.47E-13	$4.80 \mathrm{E}+00$	$4.49 \mathrm{E}+03$	-1.54E-04	2.19E-04	$9.28 \mathrm{E}-01$	3.83E-02	$9.44 \mathrm{E}-01$	\#REF!
H-3	V	$1.23 \mathrm{E}+01$	5.63E-02	9.37E-01	\#REF!	\#REF!	1.99E-13	$4.80 \mathrm{E}+00$	$4.49 \mathrm{E}+03$	-1.54E-04	2.19E-04	$9.28 \mathrm{E}-01$	3.83E-02	$9.44 \mathrm{E}-01$	\#REF!
Pu-238	M	$8.77 \mathrm{E}+01$	$7.90 \mathrm{E}-03$	3.21E-01	\#REF!	\#REF!	$5.62 \mathrm{E}-14$	8.27E-06	$3.20 \mathrm{E}+04$	-2.16E-05	8.66E-05	6.46E-01	3.85E-02	$9.44 \mathrm{E}-01$	\#REF

External Exposure								
	Type	Ground Plane	Soil Volume	1 cm	5 cm	15 cm	SF(imm)	SF(sub)
Am-241	M	1.87E-08	$2.77 \mathrm{E}-08$	1.38E-08	$2.58 \mathrm{E}-08$	2.77E-08	$1.32 \mathrm{E}-13$	5.81E-11
Co-60	M	2.19E-06	$1.24 \mathrm{E}-05$	2.26E-06	6.49E-06	1.04E-05	$2.44 \mathrm{E}-11$	$1.13 \mathrm{E}-08$
H-3	V	0.00E+00	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
H-3	M	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$
Pu-238	M	$3.68 \mathrm{E}-10$	$6.92 \mathrm{E}-11$	4.81E-11	6.30E-11	6.87E-11	5.96E-16	2.56E-13

Ingestion					
	Type	SF(w)	SF(f)	SF(s)	Soil Worker
Am-241	M	$1.04 \mathrm{E}-10$	$1.34 \mathrm{E}-10$	$1.84 \mathrm{E}-10$	$9.10 \mathrm{E}-11$
Co-60	M	$1.58 \mathrm{E}-11$	$2.23 \mathrm{E}-11$	$3.81 \mathrm{E}-11$	$7.33 \mathrm{E}-12$
H-3	V	$5.07 \mathrm{E}-14$	$6.51 \mathrm{E}-14$	$8.99 \mathrm{E}-14$	$4.51 \mathrm{E}-14$
H-3	M	$1.12 \mathrm{E}-13$	$1.44 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
Pu-238	M	$1.31 \mathrm{E}-10$	$1.69 \mathrm{E}-10$	$2.25 \mathrm{E}-10$	$1.17 \mathrm{E}-10$

Inhalation Form		
Am-241	F	SF(i)
Am-241	M	$2.77 \mathrm{E}-08$
Am-241	S	$3.81 \mathrm{E}-08$
Co-60	F	$1.71 \mathrm{E}-08$
$\mathrm{Co}-60$	M	$3.59 \mathrm{E}-11$
$\mathrm{Co}-60$	S	$1.01 \mathrm{E}-10$
$\mathrm{H}-3$	F	$1.95 \mathrm{E}-14$
$\mathrm{H}-3$	M	$1.99 \mathrm{E}-13$
$\mathrm{H}-3$	S	$8.47 \mathrm{E}-13$
$\mathrm{H}-3$	V	$5.62 \mathrm{E}-14$
$\mathrm{H}-3$	G (elemental)	$5.62 \mathrm{E}-18$
$\mathrm{H}-3$	$\mathrm{G}($ organic	$1.28 \mathrm{E}-13$
Pu-238	F	$5.22 \mathrm{E}-08$
Pu-238	M	$3.36 \mathrm{E}-08$
Pu-238	S	$3.55 \mathrm{E}-08$

Ground Plane, Area Correction Factor																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	10 m ^2	$20 \mathrm{~m}^{\wedge} 2$	$50 \mathrm{~m}^{\wedge} 2$	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$8.40 \mathrm{E}-02$	$1.50 \mathrm{E}-01$	2.70E-01	3.90E-01	5.10E-01	6.50E-01	7.40E-01	8.10E-01	8.70E-01	$9.10 \mathrm{E}-01$	9.30E-01	9.50E-01	9.80E-01	$9.90 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$2.80 \mathrm{E}-02$	5.20E-02	9.80E-02	1.50E-01	2.10E-01	2.90E-01	3.70E-01	4.40E-01	5.40E-01	5.90E-01	6.60E-01	7.40E-01	8.10E-01	$8.70 \mathrm{E}-01$	9.10E-01	$9.70 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$	1.00E+00	$1.00 \mathrm{E}+00$														
Pu-238	1.00E-01	$1.80 \mathrm{E}-01$	3.30E-01	4.70E-01	6.10E-01	7.80E-01	8.70E-01	9.40E-01	9.90E-01	$1.00 \mathrm{E}+00$							

Soil Volume																	
	$1 \mathrm{~m}^{\wedge} 2$	$2 \mathrm{~m}^{\wedge} 2$	$5 \mathrm{~m}^{\wedge} 2$	$10 \mathrm{~m} \wedge 2$	$20 \mathrm{~m}^{\wedge} 2$	50 m ^2	$100 \mathrm{~m}^{\wedge} 2$	$200 \mathrm{~m}^{\wedge} 2$	$500 \mathrm{~m}^{\wedge} 2$	$1000 \mathrm{~m}^{\wedge} 2$	$2000 \mathrm{~m}^{\wedge} 2$	$5000 \mathrm{~m}^{\wedge} 2$	$10000 \mathrm{~m}^{\wedge} 2$	$20000 \mathrm{~m}^{\wedge} 2$	$50000 \mathrm{~m}^{\wedge} 2$	$100000 \mathrm{~m}^{\wedge} 2$	Infinite
Am-241	$1.00 \mathrm{E}-01$	1.90E-01	3.20E-01	4.80E-01	5.50E-01	6.60E-01	6.90E-01	7.50E-01	7.40E-01	8.20E-01	8.70E-01	9.10E-01	$1.10 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$
Co-60	$9.80 \mathrm{E}-02$	1.80E-01	3.30E-01	4.90E-01	5.90E-01	7.00E-01	7.40E-01	7.60E-01	7.10E-01	9.30E-01	8.50E-01	8.80E-01	$9.20 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.50 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
H-3	$1.00 \mathrm{E}+00$																
Pu-238	$1.80 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	5.90E-01	8.20E-01	8.60E-01	9.80E-01	$1.00 \mathrm{E}+00$	9.40E-01	9.70E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	9.90E-01	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$

G. Timothy Jannik

1 Sedgewood Court
North Augusta, SC 29860
tim.jannik@srnl.doe.gov
(803) 819-8401 (work)

Position: Principal Technical Advisor

Education/Qualification:

- Bachelors of Science, 1977: Villanova University, Mechanical Engineering
- Masters of Science, 1988: Georgia Institute of Technology, Health Physics

Relevant Experience:

Tim Jannik is a Principal Technical Advisor at the Savannah River National Laboratory (SRNL). He has over 35 years of experience in the nuclear industry, 26 of which have been at the Savannah River Site. Mr. Jannik is the technical lead of the Environmental Dosimetry Group at SRNL and he specializes in 1) environmental dosimetry and radioecology, 2) effluent monitoring and environmental surveillance, and 3) human health risk analyses.

Employment and Professional History:

1995 to present, Savannah River National Laboratory

Savannah River Nuclear Solutions/WSRC

Principal Technical Advisor

- Technical Lead of the SRNL Environmental Dosimetry Group
- Savannah River Site (SRS) subject matter expert for human health risk and environmental dose assessments
- Technical Advisor for the Environmental Monitoring Section

1989-1995, Westinghouse Savannah River Company

Principal Engineer/Scientist

- Subject matter expert for Environmental Monitoring (1991-1995)
- Effluent Monitoring System Engineer for Reactors (1990-1991)
- Start-up Engineer for Defense Waste Processing Facility (1989-1990)

1977-1989, Project/Construction Engineer

- Georgia Power Company (Plant Vogtle) (1984-1989)
- Newburg/Marble Hill (1983-1984)
- Bechtel Power Corporation (1982-1983)
- Tennessee Valley Authority (1979-1982)
- Martin Marietta Corporation (1978-1979)
- Rutgers University (Research Assistant) (1977-1978)

Technical Accomplishments:

60+ Technical Reports, Publications, and Presentations
Peer Reviewer for Health Physics Journal

Professional Affiliations:

Health Physics Society (HPS), Member since 1992

Awards and Honors:

Pi Tau Sigma (Mechanical Engineering Honor Society)
1998 Westinghouse Savannah River Company Vice-President's Award
2003 and 2004 Savannah River National Laboratory Directors Award

Other:

Active DOE 'Q' Clearance

Selected Publications:

1. E.B. Farfan and G.T. Jannik, (editors), Radiation Monitoring and Radioecology Research in the Chernobyl Exclusion Zone - 25 Years After the Accident, Special Issue of the Health Physics Journal, ISSN 0017-9078, Vol. 101, No. 4, October 2011.
2. G.T. Jannik, M.H. Paller, and P.D. Fledderman, Effective Dosimetric Half-Life of Cs-137 Soil Contamination, Published in the Proceedings of the 2008 ANS Annual Meeting, 2008.
3. M.H. Paller, G.T. Jannik, and P.D. Fledderman Changes in Cs-137 Concentrations in Soil and Vegetation on the Floodplain of the Savannah River Over a 30 Year Period, Journal of Environmental Radioactivity, ISSN 0265-931X, Vol. 99. No. 8, pp 1302-1310, 2008.
4. P.D. Fledderman, G.T. Jannik, and M.H. Paller, An Overview of Cs-137 Contamination in a Southeastern Swamp Environment, Operational Health Physics-The Radiation Safety Journal, Vol. 93, Sup. 3, 2007.
5. M.H. Paller, G.T. Jannik, and L.D. Wike, Concentration Ratios for Small Mammals Collected from the Exposed Sediments of a Cs-137 Contaminated Reservoir, Journal of Environmental Radioactivity, ISSN 0265-931X, Vol. 90. No. 3, pp 224-235, 2006.
6. G.T. Jannik, P.L. Lee, T.O. Oliver, J.L. Roach, Jr., and A.A. Simpkins. RiskBased Radionuclide Derived Concentration Guideline Levels for an Industrial Worker Exposed to Concrete-Slab End States at the Savannah River Site." Proceedings of the 2005 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization. "The Transition to Closure and Legacy Management." ANS Order No. 700315, ISBN 0-89448-689-6, La Grange Park, IL, August, 2005.
7. G.T. Jannik and P.D. Fledderman, Risk-Based Radioactive Liquid Effluent Monitoring Requirements at the U.S. Department of Energy's Savannah River Site, Operational Health Physics-The Radiation Safety Journal, Vol. 82, Supplement 1, February 2002.
8. G.T. Jannik, Critical Radionuclide/Critical Pathway Analysis for the U.S. Department of Energy's Savannah River Site, Risk Analysis-An International Journal, Vol. 19, No. 3, 1999.
9. W.H. Carlton, C.E. Murphy, G.T. Jannik, and A.A. Simpkins Radiostrontium in the Savannah River Site Environment, Health Physics-The Radiation Safety Journal, Vol. 77, Number 6, December 1999.

Conflict of Interest Certification

Verification Study：U．S．Environmental Protection Agency（EPA），＂Preliminary Remediation Goals（PRG） for Radionuclides Electronic Calculator＂

A conflict of interest or lack of impartiality exists when the proposed reviewer personally（or the reviewer＇s immediate family），or his or her employer，has financial interests that may be affected by the results of verification study；or may provide an verification study may be impaired due to other factors．When the Reviewer knows that a reasonable person with knowledge of the facts may question the reviewer＇s impartiality or financial involvement，an apparent lack of impartiality or conflict of interest exists．

The following questions，if answered affirmatively，represent potential or apparent lack of impartiality（any affirmative answers should be explained on the back of this form or in an attachment）：
－Did you contribute to the development of the document under review，or were you consulted during its development，or did you offer comments or suggestions to any drafts or versions of the document during its development？No \square Yes
－Do you know of any reason that you might be unable to provide impartial advice on the matter under consideration in this verification study，or any reason that your impartiality in the matter might be questioned？ H No \square Yes
－Have you had any previous involvement with the review documents）under consideration？\square No \square Yes
－Have you served on previous advisory panels，committees，or subcommittees that have addressed the topic under consideration？No Y Yes
－Have you made any public statements（written or oral）on the issue？No 口 Yes
－Have you made any public statements that would indicate to an observer that you have taken a position on the issue under consideration？茵 No Yes
－Do you，your family，or your employer have any financial interests）in the matter or topic under review，or could someone with access to relevant facts reasonably conclude that you（or your family or employer）stand to benefit from a particular outcome of this verification study？追 No \square Yes

With regard to real or apparent conflicts of interest or questions of impartiality，the following provisions shall apply for the duration of this verification study：
（a）Reviewer warrants，to the best of his／her knowledge and belief，that there are no relevant facts or circumstances that could give rise to an actual，apparent，or potential organizational or personal conflict of interest，or that Reviewer has disclosed all such relevant information to EMS or to EPA．
（b）Reviewer agrees that if an actual，apparent，or potential personal or organizational conflict of interest is identified during performance of this verification study，he／she immediately will make a full disclosure in writing to EMS．This disclosure shall include a description of actions that Reviewer（or his／her employer）has taken or proposes to take after consultation with EMS to avoid，mitigate，or neutralize the actual，apparent，or potential organizational conflict of interest．Reviewer shall continue performance until notified by EMS of any contrary action to be taken．

Check here if any explanation is attached

Printed Name

Affiliation／Organization

Wm. Thomas Pentecost
 Colorado Department of Public Health and Environment (Retired)

Independent Verification Study
EPA, "Preliminary Remediation Goals for Radionuclides" (PRG) electronic calculator 29 September 2015

This study was conducted to perform an independent evaluation of the PRG calculator to ascertain if the calculator is operating according to its intended design and to verify that the results obtained compare favorably with those obtained using similar or identical mathematical frameworks. The study examined model inputs, the equations used in calculating the PRGs, and the performance of the model. Time limitations for this study prevented an exhaustive evaluation of every equation, input parameter, and modeling assumption. The findings of study are provided and grouped into the following areas: Inputs; Equations and Calculations; Model Inconsistencies; and Conclusions

Inputs

Many of the key default input parameters for establishing the various exposure scenarios (for example: the soil ingestion rate for a resident child; the adult respiration rate for a site worker; the exposure duration for a resident farmer; etc.) are consistent with the "conservative" modeling assumptions typically used by federal and state agencies when setting site specific clean-up standards for residual radioactive material contamination.

Some input parameters have a control placed upon the absolute range of possible inputs that the user can enter under user specified conditions. For example: See the input parameter $\mathrm{EF}_{\text {far-a }}$ (exposure frequency - farmer adult) under the Resident Farmer exposure scenario when modeling exposures from the inhalation of airborne radioactive materials. The default value for this parameter is 350 days/year. If the modeler were to enter an inappropriate value such as 385 days/year the model provides an error message stating, " Days per year cannot exceed 365 nor be less than 0.

Please reenter." Clicking on the error message box resets the parameter to the default value. The model user is then free to use the default value or enter an appropriate site specific value.

Other input parameters do not have similar controls placed on the range of input values. For example: See the input parameter $I R A_{\text {far-a }}$ (inhalation rate - farmer adult) under the Resident Farmer exposure scenario when modeling exposures from the inhalation of airborne radioactive materials. The default value for the adult farmer's inhalation rate is $20 \mathrm{~m}^{3} /$ day. If the modeler were to enter an inappropriate value (either by typographical error or by design) such as an inhalation rate of $48 \mathrm{~m}^{3} /$ day or $2 \mathrm{~m}^{3} /$ day, the model provides no error message. The model then calculates corresponding PRGs based upon the nonsensical inputs.

Examples of input parameters without "input controls / limits" can be found throughout the various exposure scenarios, and include many parameters that can have a substantial impact upon the resulting PRGs. The following are a few examples of input parameters without input controls/limits: $E D_{\text {res-a }}$ (exposure duration - resident adult) years
$\mathrm{IRS}_{\text {res-c }}$ (soil intake rate - resident child) mg/day
$E D_{w}$ (exposure duration - composite worker) yr
$I R A_{w}$ (inhalation rate - composite worker) $\mathrm{m}^{3} /$ day
U_{m} (mean annual wind speed) m / s
I_{r} (irrigation rate) $\mathrm{L} / \mathrm{m}^{2}$-day
$\mathrm{Q}_{\mathrm{p} \text {-dairy }}$ (dairy fodder intake rate) $\mathrm{kg} /$ day
$f_{p \text {-poultry }}$ (animal on-site fraction) unitless

Equations and Calculations

Several of the PRG calculations performed by the model were verified by independently calculating the PRG using the equations provided in the PRG Guide and default input values. In each case, the results of the independent calculations when rounded to the same number of significant figures were identical to the PRG model results.

Numerous model runs were made within exposure scenarios for Resident, Composite Worker, Outdoor Worker, Indoor Worker, and Farmer. A "baseline PRG" calculation for each scenario using all default values for inputs was first obtained. The model was then repeatedly used use to generate a new set of

PRGs by varying a single exposure parameter within that scenario (such as soil intake rate, exposure duration, inhalation rate, etc.) and the results compared to the "baseline PRG". The model consistently produced a result that accurately reflected the change in the individual exposure parameter.

Model Inconsistencies

The model presents two separate lines of input for the some radionuclides. It is completely unclear why there are two lines for some and not others. It is also unclear how the model is using the two lines of input values.

Example PRG Calculator run:

PRG Calculator: Resident Scenario, exposure media Soil, user provided isotope information, No risk output, units in pCi, Isotopes selected I-129 and I 131, retrieve;

The model produces a table with two rows of input data for both I-129 and I-131. Many of the slope factors are missing in one of the lines for each of the two isotopes.

Under this scenario, the model requires the user to select a value for Slab Area and Cover Thickness. Enter $100,000 \mathrm{~m}^{2}$ for slab area and 0 cm for cover thickness. All other default values are used. Retrieve.

The model produces a table of Resident PRGs for Soil listing two lines of model results for each of the two radionuclides. Different results are provided for the same radionuclide (a blank or a value) in the columns pertaining to Area Correction Factor, Gamma Shielding Factor, and External Exposure PRG. The Total PRG values are identical in the two rows for l-129 but different in the two rows for l-131.

Double line entries have been noted for other radionuclides including: H-3, l-123, l-121, l-123, I-124, I-125, l-126, l-128, l-130, Ni-56, Ni-57, Ni-59, Ni-63, Ni-65, Ni-66, S-35, S-38, Te-133, Te-133m, and Te-134.

Conculsion

In Section 2.2.1 of the PRG User's Guide a lengthy discussion is provided about the selection of individual isotopes and isotopes that are listed with a ' $+D$ ' designation. The section also makes reference to a table of the 100 year progeny ingrowth for the isotopes used in the slope factors. An individual attempting to use the PRG Calculator does not have a ready reference when selecting an isotope with a '+D' designation to see precisely which of the decay products is being including in the calculations when making that selection.

It is recommended that the model identify the decay products that are included in the analysis (and assumed to be in secular equilibrium) whenever an isotope with a ' $+D$ ' designation is selected. This could be in a separate box to the right of the box for "selected" individual Isotopes on the input screen. It is absolutely critical to get the proper radionuclide mix into the PRG Calculator.

Potential users of the PRG calculator will likely include State or Federal Regulators; Site managers; concerned citizens; and possibly persons seeking to disrupt the cleanup process. Each has a limited skill set with regards to the use this type of modeling tool. Constraints need to be placed upon all input parameters that can be modified by an individual user such as the 0 to 365 day range constraints for $\mathrm{EF}_{\text {far-a }}$ (exposure frequency - farmer adult) as discussed above. At a minimum, the constraints must limit the range of inputs to the range of possible values. However, I recommend more restrictive constraints for some key input parameters. A good deal of thought and effort went into the selection of the default inputs values to make the PRG results conservative in nature. Appropriate constraints would allow flexibility in the modeling while preserving the conservative nature of the PRG results. For example: a range limit on the child soil ingestion rate could be set at $+/-20 \%$ of the default value of $200 \mathrm{mg} /$ day. When such constraints are imposed, the PRG User's Guide should have a more in depth discussion of the default value as is provided regarding child soil ingestion in Section 4.1.1 Resident Soil.

For any given exposure scenario some input parameters will have a larger impact upon the calculated PRGs than other parameters. It would be extremely valuable to have a means of performing a sensitivity analysis on various input parameters. Knowing which parameters for a given exposure scenario were having the largest impact on the calculations of the PRGs would allow the modeler to focus efforts to ensure the accuracy of the site specific input values for those parameters.

Section 4.10.6 of the PRG User's Guide pertains to a gamma shielding factor. This section is particularly well written. It provides essential information pertaining to the parameter and its use in the modeling. It also provides two specific default gamma shielding factors for indoor exposure (GSFi is established at 0.4 (60% shielding) and for exposure to ionizing radiation in air (GSFa is established at 1 (0% shielding).

It is recommended that additional informative sections be added to the PRG User's Guide to describe, in similar detail, many of the more critical default input parameters and the basis for the selection of default input values.

I am currently a retired Health Physicist and am available to provide technical assistance for short term projects.

Employment History:
1976-1982 U.S. Air Force, Nuclear Weapons Mechanic, E5, Honorably Discharged
1982-1989 United Postal Service, worked the midnight shift on the loading dock sorting packages to support my family while attending Indiana University.

1989-2008 Colorado Department of Public Health and Environment: Health Physicist (EPS III)

- Performed technical analysis of potential radiation hazards, worker training, and health physics operating procedures to determine the adequacy of license applications for industrial and medical uses of radioactive materials.
- Inspected licensed facilities to determine compliance with State regulations and license conditions.
- Investigated occurrences of lost and/or found radioactive sources. Preformed contamination surveys, and evaluated the adequacy of facility shielding.
- Prepared written correspondence, license documents, inspections reports and other significant documentation for the Department of Health.
- Developed emergency response plans and procedures for the Colorado Department of Health and participated in numerous emergency drills and exercises at the Stata EOC pertaining to potential releases from Rocky Flats.
- Performed RESRAD modeling to evaluate proposed residual contamination levels associated with the decommissioning of licensed facilities using unsealed radioactive materials and for Rock Flats.
- Performed extensive modeling and sensitivity analysis on input parameters for use of the RESRAD modeling code. Participated in a multi-agency (DOE, EPA, State Health and Rocky Flats) assessment of potential doses to members of the public for various decommissioning scenarios at Rocky Flats.

Training and Education:
Indiana University: Bachelors in Mathematics
Oak Ridge Associated University: Courses in Applied Health Physics, Medical Use of Radioactive Materials, Health Physics Engineering, and Handling of Radiation Accidents.

Argonne National Laboratories: Multiple workshops pertaining to RESRAD and RESRAD-Build
U.S. Nuclear Regulatory: Numerous courses pertaining to the licensure, inspection and decommissioning of facilities using radioactive materials.

Conflict of Interest Certification

Verfication Study: U.S. Environmental Protection Agency (EPA), "Preliminary Remediation Goals (PRG) for Radionuclides Electronic Calculator"

A conflict of interest or lack of impartiality exists when the proposed reviewer personally (or the reviewer's immediate family, or his or her employer, has financial interests that may be affected by the results of verification study; or may provide an verification study may be impaired due to other factors. When the Reviewer knows that a reasonable person with knowledge of the facts may question the reviewer's impartiality or financial involvement, an apparent lack of impartiality or conflict of interest exists.

The following questions, if answered affirmatively, represent potential or apparent lack of impartiality (any affirmative answers should be explained on the back of this form or in an attachment):

- Did you contribute to the development of the document under review, or were you consulted during its development, or did you offer comments or suggestions to any drafts or versions of the document during its development? No \square Yes
- Do you know of any reason that you might be unable to provide impartial advice on the matter under consideration in this verification study, or any reason that your impartiality in the matter might be questioned? No \square Yes
- Have you had any previous involvement with the review documents) under consideration? No \square Yes
- Have you served on previous advisory panels, committees, or subcommittees that have addressed the topic under consideration? X No \square Yes
- Have you made any public statements (written or oral) on the issue? X No \square Yes
- Have you made any public statements that would indicate to an observer that you have taken a position on the issue under consideration? No \quad Yes
- Do you, your family, or your employer have any financial interests) in the matter or topic under review, or could someone with access to relevant facts reasonably conclude that you (or your family or employer) stand to benefit from a particular outcome of this verification study? No \square Yes

With regard to real or apparent conflicts of interest or questions of impartiality, the following provisions shall apply for the duration of this verification study:
(a) Reviewer warrants, to the best of his/her knowledge and belief, that there are no relevant facts or circumstances that could give rise to an actual, apparent, or potential organizational or personal conflict of interest, or that Reviewer has disclosed all such relevant information to EMS or to EPA.
(b) Reviewer agrees that if an actual, apparent, or potential personal or organizational conflict of interest is identified during performance of this verification study, he/she immediately will make a full disclosure in writing to EMS. This disclosure shall include a description of actions that Reviewer (or his/her employer) has taken or proposes to take after consultation with EMS to avoid, mitigate, or neutralize the actual, apparent, or potential organizational conflict of interest. Reviewer shall continue performance until notified by EMS of any contrary action to be taken.

Printed Name

[^0]: Inhalation (with half-life decay)

 External (with half-life decay)
 (
 /"day")" x " ("1 day" /"24 hrs")" x GS" "F" _"a" " " ("1.0")
 Total (with hall--life decay)

 Inhalation (without half-ife decay)
 "PR" "G" "ow-air-inh-nodecay" "" ("pCi" /"m" ^"3")"=" ト"TR" - /("S" "F" "i" " " ("risk" /"pCi")" x E" "F" "ow" " " ("250 day" /"yr")" x E" "D" "ow" "

 External (without half-life decay) " " ("CCi" /"m" ^"3")"=" ト"TR"

 Total (without half-life decay)
 "PR" "G" _"ow-air-tot-nodecay" " " ("pCi" /"m" ^"3")"=" "1"/("1" /("PR" "G" _"ow-air-inh-nodecay") "+" "1" /("PR" "G"_"ow-air-sub-nodecay")" ")

[^1]: Incidental ingestion of soil
 PR" "G" -"rec--sol-ing" " " ("pCi" /"g")"=" ("TRx" "t"_"rec" " " ("years")" x /"1000 m" ${ }^{\text {" }}$))
 "IF" "S" "-rec-adj" " " ("mg")"=" (("E" "F" _"recsc" " " ("days" /"yr")" x E" "D" _"recsc" " " ("yr")" x IR" "S" "recsc" " " ("200 mg" /"day"))"+" ("E" "F" _"recsa" " " ("days" /"yr")" x E" "D" "recsa"

 /"year")" x" ("1 yr" /"365 days")" x E" "D"_"rec" " " ("yrs")" x E" "T" _"rec" " " ("hr" /"day")" x" ("1 day" /"24 hrs")" x GS" "F" _"o" " " ("1.0")" x AC" "F" _"ext-sv")
 otal
 "PR" "G" _"rec-sol-tot" " " ("pCi" /"g")"=" "1" /("1" /("PR" "G"_"rec-sol-ing") "+" "1" /("PR" "G" _"rec-sol-inh") "+" "1" /("PR" "G" _"rec-sol-ext"))

[^2]: Direct External Exposure to contamination at infinite depth
 /"g" -)" x E" "F" ."rec" " " ("days" /"yr")" x" ("1yr" /"365 days")" x E" "D" _"rec" " " ("yr")" x" + ト "E" "T" _"rec" " " ("8 hrs" /"day")" x" ("1 day" /"24 hr")" x GS" - (1.0- \times - ext-sv" -1)

 GS" $F_{-}-0$ (1.0^{0}) " $\times A C^{\prime} F_{-}$"ext- $1 \mathrm{~cm} "+1$

